ЛІМФОПРОЛІФЕРАТИВНІ ЗАХВОРЮВАННЯ, АСОЦІЙОВАНІ З ІМУНОДЕФІЦИТАМИ, ТА ЛІМФОЇДНІ НОВОУТВОРЕННЯ ПІСЛЯ ПАНДЕМІЇ COVID-19
DOI:
https://doi.org/10.32471/exp-oncology.2312-8852.vol-43-no-1.15795Ключові слова:
лімфопроліферативні захворювання, лімфоїдні новоутворення, SARS-CoV-2.Анотація
У переглянутій класифікації ВООЗ пухлин кровотворної та лімфоїдної тканин від 2017 р. містяться кілька окремих розділів, присвячених лімфопроліферативним захворюванням, асоційованим з імунодефіцитами. У представленому мініогляді наведено стислий опис патологічних, імунофенотипових і клінічних особливостей лімфоїдних новоутворень, асоційованих з первинними імунними розладами, інфекцією ВІЛ, а також таких, що виникають після трансплантації та інших лімфопроліферативних захворювань (виключаючи індуковані радіацією). Гетерогенний спектр цих лімфоїдних злоякісних новоутворень обумовлений природою факторів, здатних спричиняти імунодепресію або хронічну антигенну стимуляцію імунної системи. З огляду на те, що пандемія, спричинена SARS-CoV-2, перебуває в розпалі, і ми ще не до кінця усвідомлюємо здатність цього вірусу індукувати тривалу стимуляцію імунної системи, не можна виключати високого ризику автоімунних захворювань та лімфоїдних новоутворень, що можуть виникнути через тривалий час після пандемії. У цьому контексті, слід розглянути роль ангіотензинперетворювального ферменту 2 та інших клітинних рецепторів для потрапляння SARS-CoV-2 всередину клітини. Також слід звернути увагу на те, що деякі з цих клітинних рецепторів (CD147, CD26) є пухлино-асоційованими антигенами.
Посилання
Swerdlow SH, Campo E, Pileri SA, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016; 127: 2375–90.
WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th ed. Swerdlow SH, Campo E, Harris NL, et al., Eds. Lyon: IARC, 2017. 594 p.
Akiyama M. Late effects of radiation on the human immune system: an overview of immune response among the atomic-bomb survivors. Int J Radiat Biol 1995; 68: 497–508.
Lumniczky K, Impens N, Armengol G, et al. Low dose ionizing radiation effects on the immune system. Environ Int 2021; 149: 106212.
Gluzman DF, Zavelevych MP, Philchenkov AA, et al. Leukemia. Radiation. Chornobyl (Oncohematological Consequences of the Chornobyl Catastrophe). New York: Nova Science Publishers, Inc., 2020. 176 p.
Koval SV, Gluzman DF, Sklyarenko LM, et al. Hematological malignancies in Ukraine in post-Chernobyl era: Sources of data and their preliminary analysis. Ann Hematol 2020; 99: 1543–50.
van Krieken JH, Onciu M, Elenitoba-Johnson KSJ, Jaffe ES. Lymphoproliferative diseases associated with primary immune disorders. In: Swerdlow SH, Campo E, Harris NL, et al., Eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th ed. Lyon: IARC, 2017: 444–8.
Birkeland SA, Hamilton-Dutoit S. Is posttransplant lymphoproliferative disorder (PTLD) caused by any specific immunosuppressive drug or by the transplantation per se? Transplantation 2003; 76: 984–8.
Swerdlow SH, Webber SA, Chadburn A, Ferry JA. Post-transplant lymphoproliferative disorders. In: Swerdlow SH, Campo E, Harris NL, et al., Eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th ed. Lyon: IARC, 2017: 453–61.
Gaulard P, Swerdlow SH, Harris NL, et al. Other iatrogenic immunodeficiency- associated lymphoproliferative disorders. In: Swerdlow SH, Campo E, Harris NL, et al., Eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th ed. Lyon: IARC, 2017: 462–4.
Said J, Cesarman E, Rosenwaid A, Harris NL. Lymphomas associated with HiV infection. In: Swerdlow SH, Campo E, Harris NL, et al., Eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th ed. Lyon: IARC, 2017: 449–52.
Beral V, Peterman T, Berkelman R, et al. AIDS-associated non-Hodgkin lymphoma. Lancet 1991; 337: 805–9.
Levine AM. AIDS-related malignancies: the emerging epidemic. J Natl Cancer Inst 1993; 85: 1382–97.
Shareef MA, Bashaiwth HM, AlAkbari AO, et al. A systematic review of contemporary evidence on SARS-CoV-2 and HIV coinfection: What does it look like up to date? Avicenna J Med 2020; 10: 189–97.
Chen Z, Wherry EJ. T cell responses in patients with COVID-19. Nat Rev Immunol 2020; 20: 529–36.
Pushkarsky T, Zybarth G, Dubrovsky L, et al. CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A. Proc Natl Acad Sci U S A 2001; 98: 6360–5.
Suarez F, Lortholary O, Hermine O, Lecuit M. Infection-associated lymphomas derived from marginal zone B cells: a model of antigen-driven lymphoproliferation. Blood 2006; 107: 3034–44.
Devarakonda CKV, Meredith E, Ghosh M, Shapiro LH. Coronavirus receptors as immune modulators. J Immunol 2021; 206: 923–9.
Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 2020; 55: 102763.
Cao X. COVID-19: Immunopathology and its implications for therapy. Nat Rev Immunol 2020; 20: 269–70.
Grifoni A, Weiskopf D, Ramirez SI, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020; 181: 1489–501.e15.
Terpos E, Ntanasis-Stathopoulos I, Elalamy I, et al. Hematological findings and complications of COVID-19. Am J Hematol 2020; 95: 834–47.
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497–506.
Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8: 420–2.
Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak — an update on the status. Mil Med Res 2020; 7: 11.
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579: 270–3.
Larrinaga G, Pérez I, Sanz B, et al. Angiotensin-converting enzymes (ACE and ACE2) are downregulated in renal tumors. Regul Pept 2010; 165: 218–23.
Zhou L, Zhang R, Zhang L, et al. Angiotensin-converting enzyme 2 acts as a potential molecular target for pancreatic cancer therapy. Cancer Lett 2011; 307: 18–25.
Feng Y, Ni L, Wan H, et al. Overexpression of ACE2 produces antitumor effects via inhibition of angiogenesis and tumor cell invasion in vivo and in vitro. Oncol Rep 2011; 26: 1157–64.
Qian YR, Guo Y, Wan HY, et al. Angiotensin-converting enzyme 2 attenuates the metastasis of non-small cell lung cancer through inhibition of epithelial-mesenchymal transition. Oncol Rep 2013; 29: 2408–14.
Wang K, Chen W, Zhang Z, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther 2020; 5: 283.
Helal MA, Shouman S, Abdelwaly A, et al. Molecular basis of the potential interaction of SARS-CoV-2 spike protein to CD147 in COVID-19 associated-lymphopenia. J Biomol Struct Dyn 2020 Sep 16; 1–11. doi: 10.1080/07391102.2020.1822208.
Bubnovskaya LN. Some remarks about CD147. Acta Sci Cancer Biol 2020; 4: 1–2.
Vankadari N, Wilce JA. Emerging Wuhan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect 2020; 9: 601–4.
Amraei R, Rahimi N. COVID-19, renin-angiotensin system and endothelial dysfunction. Cells 2020; 9: 1652.
Thorns C, Feller AC, Merz H. EMMPRIN (CD 147) is expressed in Hodgkin’s lymphoma and anaplastic large cell lymphoma. An immunohistochemical study of 60 cases. Anticancer Res 2002; 22: 1983–6.
Beesley AH, Weller RE, Kees UR. The role of BSG (CD147) in acute lymphoblastic leukaemia and relapse. Br J Haematol 2008; 142: 1000–2.
de Vries JF, Te Marvelde JG, Wind HK, et al. The potential use of basigin (CD147) as a prognostic marker in B-cell precursor acute lymphoblastic leukaemia. Br J Haematol 2010; 150: 624–6.
Schmidt J, Bonzheim I, Steinhilber J, et al. EMMPRIN (CD147) is induced by C/EBPβ and is differentially expressed in ALK+ and ALK– anaplastic large-cell lymphoma. Lab Invest 2017; 97: 1095–102.
Panchabhai S, Schlam I, Sebastian S, Fonseca R. PKM2 and other key regulators of Warburg effect positively correlate with CD147 (EMMPRIN) gene expression and predict survival in multiple myeloma. Leukemia 2017; 31: 991–4.
Rodriguez CM, Gilardoni MB, Remedi MM, et al. Tumor-stroma interaction increases CD147 expression in neoplastic B lymphocytes in chronic lymphocytic leukemia. Blood Cells Mol Dis 2020; 82: 102405.
Torimoto Y, Dang NH, Tanaka T, et al. Biochemical characterization of CD26 (dipeptidyl peptidase IV): functional comparison of distinct epitopes recognized by various anti-CD26 monoclonal antibodies. Mol Immunol 1992; 29: 183–92.
Nishida H, Hayashi M, Morimoto C, et al. CD26 is a potential therapeutic target by humanized monoclonal antibody for the treatment of multiple myeloma. Blood Cancer J 2018; 8: 99.
Morimoto C, Schlossman SF. The structure and function of CD26 in the T-cell immune response. Immunol Rev 1998; 161: 55–70.
Lambeir AM, Durinx C, Scharpé S, De Meester I. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci 2003; 40: 209–94.
Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun 2020; 526: 135–40.
Carbone A, Gloghini A, Zagonel V, et al. The expression of CD26 and CD40 ligand is mutually exclusive in human T-cell non-Hodgkin’s lymphomas/leukemias. Blood 1995; 86: 4617–26.
Dang NH, Aytac U, Sato K, et al. T-large granular lymphocyte lymphoproliferative disorder: expression of CD26 as a marker of clinically aggressive disease and characterization of marrow inhibition. Br J Haematol 2003; 121: 857–65.
Cro L, Morabito F, Zucal N, et al. CD26 expression in mature B-cell neoplasia: its possible role as a new prognostic marker in B-CLL. Hematol Oncol 2009; 27: 140–7.
Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. FEBS J 2005; 272: 6179–217.
Pöhlmann S, Soilleux EJ, Baribaud F, et al. DC-SIGNR, a DC-SIGN homologue expressed in endothelial cells, binds to human and simian immunodeficiency viruses and activates infection in trans. Proc Natl Acad Sci U S A 2001; 98: 2670–5.
Hwang JK, Zhang T, Wang AZ, Li Z. COVID-19 vaccines for patients with cancer: benefits likely outweigh risks. J Hematol Oncol 2021; 14: 38.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2023 Експериментальна онкологія

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.