РОЛЬ РИБОНУКЛЕАЗ У РЕГУЛЯЦІЇ ІМУННОЇ ВІДПОВІДІ

Автор(и)

  • В. Шляховенко Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України, Київ, Україна
  • О. Самойленко Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України, Київ, Україна
  • A. Вербіненко Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України, Київ, Україна
  • I. Ганусевич Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького НАН України, Київ, Україна

DOI:

https://doi.org/10.15407/exp-oncology.2024.03.192

Ключові слова:

РНКази, гомеостатична функція, вплив на транскрипцію, імунний захист

Анотація

Рибонуклеази (РНКази) виконують різноманітні функції в живих системах. Вони відповідають за формування та процесинг різних РНК, включаючи mРНК та мікроРНК, та визначають тривалість існування різних РНК в клітині та позаклітинному середовищі. РНКази експресуються повсюдно в тканинах різних типів. В цьому стислому огляді розглянуто основні типи РНКаз та їхні функції, вплив РНКаз на транскрипцію та імуномоду­ лювання, а також роль позаклітинних РНКаз в механізмах імунного захисту.

Посилання

Siraj YA. Promises of eukaryotic ribonucleases for cancer treatment: a systematic review. Transl Med Commun. 2022;7(1):5. https://doi.org/10.1186/s41231­022­00113­9

Baranzini N, Monti L, Vanotti M, et al. AIF­1 and RNASET2 play complementary roles in the innate immune re­ sponse of medicinal leech. J Innate Immun. 2019;11(2):150­167. https://doi.org/10.1159/000493804

Boix E, Acquati F, Leonidas D, et al. Role of ribonucleases in immune response regulation during infection and can­ cer. Front Immunol. 2020;11:236. https://doi.org/10.3389/fimmu.2020.00236

Lyons SM, Fay MM, Akiyama Y, et al. RNA biology of angiogenin: Current state and perspectives. RNA Biol. 2017;14(2):171­178. https://doi.org/10.1080/15476286.2016.1272746

Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14­20. https://doi.org/10.1016/j.immuni.2014.06.008

Lu L, Li J, Moussaoui M, et al. Immune modulation by human secreted RNases at the extracellular space. Front Im- munol. 2018;9:1012. https://doi.org/10.3389/fimmu.2018.01012

Su AI, Wiltshire T, Batalov S, et al. A gene atlas of the mouse and human protein­encoding transcriptomes. Proc Natl Acad Sci U S A. 2004;101(16):6062­6067. https://doi.org/10.1093/oxfordjournals.pcp.a029599

Eller CH, Lomax JE, Raines RT. Bovine brain ribonuclease is the functional homolog of human ribonuclease 1. J Biol Chem. 2014;289(38):25996­26006. https://doi.org/10.1074/jbc.M114.566166

Rosenberg HF. Eosinophil­derived neurotoxin (EDN/RNase 2) and the mouse eosinophil­associated RNases (mEars): expanding roles in promoting host defense. Int J Mol Sci. 2015;16(7):15442­15455. https://doi.org/10.3390/ ijms160715442

Tota M, Łacwik J, Laska J, et al. The role of eosinophil­derived neurotoxin and vascular endothelial growth factor in the pathogenesis of eosinophilic asthma. Cells. 2023;12(9):1326. https://doi.org/10.3390/cells12091326

Torrent M, Sánchez D, Buzón V, et al. Comparison of the membrane interaction mechanism of two antimicrobial RNases: RNase 3/ECP and RNase 7. Biochim Biophys Acta (BBA)-Biomembranes. 2009;1788(5):1116­1125. https:// doi.org/10.1016/j.bbamem.2009.01.013

Murtha MJ, Eichler T, Bender K, et al. Insulin receptor signaling regulates renal collecting duct and intercalated cell antibacterial defenses. J Clin Invest. 2018;128(12):5634­5646. https://doi.org/10.1172/JCI98595

Tello­Montoliu A, Patel JV, Lip GYH. Angiogenin: a review of the pathophysiology and potential clinical applica­ tions. J Thromb Haemost. 2006;4(9):1864­1874. https://doi.org/10.1111/j.1538­7836.2006.01995.x

Prats­Ejarque G, Blanco JA, Salazar VA, et al. Characterization of an RNase with two catalytic centers. Human RNase6 catalytic and phosphate­binding site arrangement favors the endonuclease cleavage of polymeric substrates. Biochim Biophys Acta Gen Subj. 2019;1863(1):105­117. https://doi.org/10.1016/j.bbagen.2018.09.021

Becknell B, Eichler TE, Beceiro S, et al. Ribonucleases 6 and 7 have antimicrobial function in the human and murine urinary tract. Kidney Int. 2015;87(1):151­161. https://doi.org/10.1038/ki.2014.268

Amatngalim GD, van Wijck Y, de Mooij­Eijk Y, et al. Basal cells contribute to innate immunity of the airway epi­ thelium through production of the antimicrobial protein RNase 7. J Immunol. 2015;194(7):3340­3350. https://doi. org/10.4049/jimmunol.1402169

Eichler TE, Becknell B, Easterling RS, et al. Insulin and the phosphatidylinositol 3­kinase signaling pathway regulate Ribonuclease 7 expression in the human urinary tract. Kidney Int. 2016;90(3):568­579. https://doi.org/10.1016/j. kint.2016.04.025

Chan CC, Moser JM, Dyer KD, et al. Genetic diversity of human RNase 8. BMC Genomics. 2012;13(1):1­10. https:// doi.org/10.1186/1471­2164­13­40

Wu L, Xu Y, Zhao H, et al. RNase T2 in inflammation and cancer: Immunological and biological views. Front Im- munol. 2020;11:1554. https://doi.org/10.3389/fimmu.2020.01554

Thorn A, Steinfeld R, Ziegenbein M, et al. Structure and activity of the only human RNase T2. Nucleic Acids Res. 2012;40(17):8733­8742. https://doi.org/10.1093/nar/gks614

Liang SL, Quirk D, Zhou A. RNase L: its biological roles and regulation. IUBMB Life. 2006;58(9):508­514. https://doi. org/10.1080/15216540600838232

D’Alessio G, Di Donato A, Parente A, et al. Seminal RNase: a unique member of the ribonuclease superfamily. Trends Biochem Sci. 1991;16:104­106

Robertson HD, Webster RE, Zinder ND. Purification and properties of ribonuclease III from Escherichia coli. J Biol Chem. 1968;243(1):82­91. https://doi.org/10.1016/S0021­9258(18)99327­0

Ardelt W, Shogen K, Darzynkiewicz Z. Onconase and amphinase, the antitumor ribonucleases from Rana pipiens oocytes. Curr Pharm Biotechnol. 2008;9(3):215­225. https://doi.org/10.2174/138920108784567245

Benito A, Ribó M, Vilanova M. On the track of antitumour ribonucleases. Mol Biosyst. 2005;1(4):294­302. https:// doi.org/10.1039/b502847g

Cheng Y, Liu P, Zheng Q, et al. Mitochondrial trafficking and processing of telomerase RNA TERC. Cell Rep. 2018;24(10):2589­2595. https://doi.org/10.1016/j.celrep.2018.08.003

Lee HH, Wang YN, Hung MC. Functional roles of the human ribonuclease A superfamily in RNA metabolism and membrane receptor biology. Mol Aspects Med. 2019;70:106­116. https://doi.org/10.1016/j.mam.2019.03.003

Vickers NJ. Animal communication: when I’m calling you, will you answer too? Curr Biol. 2017;27(14):R713­R715. https://doi.org/10.1016/j.cub.2017.05.064

Fabre O, Salehzada T, Lambert K, et al. RNase L controls terminal adipocyte differentiation, lipids storage and in­ sulin sensitivity via CHOP10 mRNA regulation. Cell Death Differ. 2012;19(9):1470­1481. https://doi.org/10.1038/ cdd.2012.23

Lee HH, Wang YN, Yang WH, et al. Human ribonuclease 1 serves as a secretory ligand of ephrin A4 receptor and induces breast tumor initiation. Nat Commun. 2021;12(1):1­18. https://doi.org/10.1038/s41467­021­23075­2

Zernecke A, Preissner KT. Extracellular ribonucleic acids (RNA) enter the stage in cardiovascular disease. Circ Res. 2016;118(3):469­479. https://doi.org/10.1161/CIRCRESAHA.115.307961

Muraille E. Redefining the immune system as a social interface for cooperative processes. PloS Pathog. 2013;9(3):e1003203. https://doi.org/10.1371/journal.ppat.1003203

Mahla RS, Reddy CM, Prasad D, et al. Sweeten PAMPs: role of sugar complexed PAMPs in innate immunity and vac­ cine biology. Front Immunol. 2013;4:248. https://doi.org/10.3389/fimmu.2013.00248

Girardello R, Baranzini N, Molteni M, et al. The medicinal leech as a valuable model for better understanding the role of a TLR4­like receptor in the inflammatory process. Cell Tissue Res. 2019;377(2):245­257. https://doi.org/10.1007/ s00441­019­03010­0

Zylbersztejn F, Byelinska I, Jeanpierre S, et al. Human myeloid differentiation by BMP4 signaling through the VDR pathway in acute myeloid leukemia. Cell Death Discov. 2024;10:325. https://doi.org/10.1038/ s41420­024­02090­4

Liu P, Huang J, Zheng Q, et al. Mammalian mitochondrial RNAs are degraded in the mitochondrial intermembrane space by RNASET2. Protein Cell. 2017;8(10):735­749. https://doi.org/10.1007/s13238­017­0448­9

Acquati F, Mortara L, De Vito A, et al. Innate immune response regulation by the human RNASET2 tumor suppres­ sor gene. Front Immunol. 2019;10:2587. https://doi.org/10.3389/fimmu.2019.02587

Baranzini N, Pulze L, Acquati F, et al. Hirudo verbana as an alternative model to dissect the relationship between innate immunity and regeneration. Invertebr Surviv J. 2020;17(1):90­98. https://doi.org/10.25431/1824­307X/isj. v0i0.90­98

Greulich W, Wagner M, Gaidt MM, et al. TLR8 is a sensor of RNase T2 degradation products. Cell. 2019;179(6):1264­ 1275. https://doi.org/10.1016/j.cell.2019.11.001

Iordanov MS, Ryabinina OP, Wong J, et al. Molecular determinants of apoptosis induced by the cytotoxic ribo­ nuclease onconase: evidence for cytotoxic mechanisms different from inhibition of protein synthesis. Cancer Res. 2000;60(7):1983­1994.

Tsai SY, Ardelt B, Hsieh TC, et al. Treatment of Jurkat acute T­lymphocytic leukemia cells by onconase (Ranpirnase) is accompanied by an altered nucleocytoplasmic distribution and reduced expression of transcription factor NF­κB. Int J Oncol. 2004;25(6):1745­1752. https://doi.org/10.3892/ijo.25.6.1745

Saxena SK, Sirdeshmukh R, Ardelt W, et al. Entry into cells and selective degradation of tRNAs by a cytotoxic mem­ ber of the RNase A family. J Biol Chem. 2002;277(17):15142­15146. https://doi.org/10.1074/jbc.M108115200

Altomare DA, Rybak SM, Pei J, et al. Onconase responsive genes in human mesothelioma cells: implications for an RNA damaging therapeutic agent. BMC Cancer. 2010;10(1):1­12. https://doi.org/10.1186/1471­2407­10­34

Qiao M, Zu LD, He XH, et al. Onconase downregulates microRNA expression through targeting microRNA precur­ sors. Cell Res. 2012;22(7):1199­1202. https://doi.org/10.1038/cr.2012.67

Kopfnagel V, Wagenknecht S, Brand L, et al. RNase 7 downregulates TH 2 cytokine production by activated human T cells. Allergy. 2017;72(11):1694­1703. https://doi.org/10.1111/all.13173

Theotoki EI, Pantazopoulou VI, Georgiou S, et al. Dicing the disease with Dicer: the implications of Dicer ribonuc­ lease in human pathologies. Int J Mol Sci. 2020;21(19):7223. https://doi.org/10.3390/ijms21197223

Song MS, Rossi JJ. Molecularmechanismsof Dicer: endonucleaseandenzymaticactivity. Biochem J. 2017;474(10):1603­ 1618. https://doi.org/10.1042/BCJ20160759

Steinfelder S, Andersen JF, Cannons JL, et al. The major component in schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega­1). J Exp Med. 2009;206(8):1681­1690. https://doi. org/10.1084/jem.20082462

Megel C, Hummel G, Lalande S, et al. Plant RNases T2, but not Dicer­like proteins, are major players of tRNA­ derived fragments biogenesis. Nucleic Acids Res. 2019;47(2):941­952. https://doi.org/10.1093/nar/gky1156

Diaz­Baena M, Galvez­Valdivieso G, Delgado­Garcia E, et al. Nuclease and ribonuclease activities in response to salt stress: identification of PvRNS3, a T2/S­like ribonuclease induced in common bean radicles by salt stress. Plant Physiol Biochem. 2020;147:235­241. https://doi.org/10.1016/j.plaphy.2019.12.016

Bielins’ka I V, Lynchak OV, Rybal’chenko TV, Hurniak OM. Hematological effects of the protein kinase inhibitor maleimide derivative in dimethylhydrazine E­induced colorectal carcinogenesis of rats. Fiziol Zh. 2014;60:40­49. https://doi.org/10.15407/fz60.04.040 (in Ukrainian).

Khabar KSA. Hallmarks of cancer and AU­rich elements. Wiley Interdiscip Rev RNA. 2017;8(1):e1368. https://doi. org/10.1002/wrna.1368

Gonsky R, Fleshner P, Deem RL, et al. Association of ribonuclease T2 gene polymorphisms with decreased expres­ sion and clinical characteristics of severity in Crohn’s disease. Gastroenterology. 2017;153(1):219­232. https://doi. org/10.1053/j.gastro.201 7.04.002

Zhu G, Xu Y, Cen X, et al. Targeting pattern­recognition receptors to discover new small molecule immune modula­ tors. Eur J Med Chem. 2018;144:82­92. https://doi.org/10.1016/j.ejmech.2017.12.026

Domachowske JB, Dyer KD, Adams AG, et al. Eosinophil cationic protein/RNase 3 is another RNase A­family ribonuclease with direct antiviral activity. Nucleic Acids Res. 1998;26(14):3358­3363. https://doi.org/10.1093/ nar/26.14.3358

Boix E, Salazar VA, Torrent M, et al. Structural determinants of the eosinophil cationic protein antimicrobial activity.

Biol Chem. 2012;393(8):801­815. https://doi.org/10.1515/hsz­2012­0160

Bystrom J, Amin K, Bishop­Bailey D. Analysing the eosinophil cationic protein­a clue to the function of the eosino­ phil granulocyte. Respir Res. 2011;12(1):1­20. https://doi.org/10.1186/1465­9921­12­10

Shamri R, Young KM, Weller PF. PI 3K, ERK, p38 MAPK and integrins regulate CCR 3­mediated secretion of mouse and human eosinophil­associated RNases. Allergy. 2013;68(7):880­889. https://doi.org/10.1111/all.12163

Becknell B, Ching C, Spencer JD. The responses of the ribonuclease A superfamily to urinary tract infection. Front Immunol. 2019;10:2786. https://doi.org/10.3389/fimmu.2019.02786

Pulido D, Arranz­Trullén J, Prats­Ejarque G, et al. Insights into the antimicrobial mechanism of action of hu­ man RNase6: structural determinants for bacterial cell agglutination and membrane permeation. Int J Mol Sci. 2016;17(4):552. https://doi.org/10.3390/ijms17040552

Harder J, Dressel S, Wittersheim M, et al. Enhanced expression and secretion of antimicrobial peptides in atop­ ic dermatitis and after superficial skin injury. J Invest Dermatol. 2010;130(5):1355­1364. https://doi.org/10.1038/ jid.2009.432

Koczera P, Martin L, Marx G, et al. The ribonuclease a superfamily in humans: canonical RNases as the buttress of in­ nate immunity. Int J Mol Sci. 2016;17(8):1278. https://doi.org/10.3390/ijms17081278

Andika IB, Kondo H, Suzuki N. Dicer functions transcriptionally and posttranscriptionally in a multilayer antiviral defense. Proc Natl Acad Sci USA. 2019;116(6):2274­2281. https://doi.org/10.1073/pnas.181240711

Rademacher F, Simanski M, Harder J. RNase 7 in cutaneous defense. Int J Mol Sci. 2016;17(4):560. https://doi. org/10.3390/ijms17040560

Kopfnagel V, Wagenknecht S, Harder J, et al. RNase 7 strongly promotes TLR9­mediated DNA sensing by human plasmacytoid dendritic cells. J Invest Dermatol. 2018;138(4):872­881. https://doi.org/10.1016/j.jid.2017.09.052

Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015;12(4):381­388.

Chen YG, Kim M V, Chen X, et al. Sensing self and foreign circular RNAs by intron identity. Mol Cell. 2017;67(2):228­ 238. https://doi.org/10.1016/j.molcel.2017.05.022

Hou J, Jiang W, Zhu L, et al. Circular RNAs and exosomes in cancer: a mysterious connection. Clin Transl Oncol. 2018;20(9):1109­1116. https://doi.org/10.1007/s12094­018­1839­y

Xu Z, Li P, Fan L, et al. The potential role of circRNA in tumor immunity regulation and immunotherapy. Front Im- munol. 2018;9:9. https://doi.org/10.3389/fimmu.2018.00009

Li P, Liu C, Yu Z, et al. New insights into regulatory T cells: exosome­and non­coding RNA­mediated regulation of homeostasis and resident Treg cells. Front Immunol. 2016;7:574. https://doi.org/10.3389/fimmu.2016.00574

##submission.downloads##

Опубліковано

19.12.2024

Як цитувати

Шляховенко , В., Самойленко, О., Вербіненко A., & Ганусевич I. (2024). РОЛЬ РИБОНУКЛЕАЗ У РЕГУЛЯЦІЇ ІМУННОЇ ВІДПОВІДІ. Експериментальна онкологія, 46(3), 192–201. https://doi.org/10.15407/exp-oncology.2024.03.192