ТЕРАПЕВТИЧНІ МІШЕНІ МОЛЕКУЛЯРНИХ СИГНАЛЬНИХ ШЛЯХІВ У КЛІТИНАХ КОЛОРЕКТАЛЬНОГО РАКУ

Автор(и)

  • Н.А. Ебру Університет Радбоуд, Радбоуд Інститут молекулярно-біологічних досліджень, 6525 GA Неймеген, Нідерланди - Університет Істиньє, Медичний навчальний центр, 34010, Стамбул, Туреччина

DOI:

https://doi.org/10.32471/exp-oncology.2312-8852.vol-44-no-1.17455

Ключові слова:

колоректальний рак, молекулярна таргетна терапія, сигнальні шляхи, пухлинні біомаркери.

Анотація

У виникненні злоякісних пухлин, у тому числі колоректального раку, задіяні мутації генів — супресорів пухлинного росту, генів білків сигнальних каскадів та генів, асоційованих з репараціями ДНК. Незважаючи на позитивні клінічні результати застосування хіміотерапії та променевої терапії у хворих на колоректальний рак, результати лікування ще далеко не досягають бажаного рівня. З’ясування молекулярних сигнальних шляхів, задіяних у прогресуванні захворювання, може сприяти розробці нових методів таргетної терапії. В огляді розглянуто потенційні молекулярні мішені, які вивчаються останнім часом у доклінічних та клінічних дослідженнях та можуть знайти своє застосування у лікуванні хворих на колоректальний рак.

Посилання

Arnold M, Sierra MS, Laversanne M, et al. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017; 66: 683–91. https://doi.org/10.1136/gutjnl-2015-310912

Mármol I, Sánchez-de-Diego C, Dieste AP, et al. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int J Mol Sci 2017; 18. https://doi.org/10.3390/ijms18010197

Meltzer SJ, Ahnen DJ, Battifora H, et al. Protooncogene abnormalities in colon cancers and adenomatous polyps. Gastroenterology 1987; 92: 1174–80. https://doi.org/10.1016/s0016-5085(87)91074-2

Forrester K, Almoguera C, Han K, et al. Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature 1987; 327: 298–303. https://doi.org/10.1038/327298a0

Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. New England J Med 1988; 319: 525–32. https://doi.org/10.1056/NEJM198809013190901

Losi L, Benhattar J, Costa J. Stability of K-ras mutations throughout the natural history of human colorectal cancer. Eur J Cancer 1992; 28A: 1115–20. https://doi.org/10.1016/0959-8049(92)90468-h

Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology 2010; 138: 2059–72. https://doi.org/10.1053/j.gastro.2009.12.065

Wood LD, Parsons DW, Jones S, et al. The genomic landscapes of human breast and colorectal cancers. Science 2007; 318: 1108–13. https://doi.org/10.1126/SCIENCE.1145720

Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487: 330–7. https://doi.org/10.1038/nature11252

Fodde R. The APC gene in colorectal cancer. Eur J Cancer 2002; 38: 867–71. https://doi.org/10.1016/S0959-8049(02)00040-0

Tran FH, Zheng JJ. Modulating the wnt signaling pathway with small molecules. Protein Sci: 2017; 26: 650–61. https://doi.org/10.1002/PRO.3122

Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 2013; 13: 11–26. https://doi.org/10.1038/NRC3419

Katoh M, Katoh M. Molecular genetics and targeted therapy of WNT-related human diseases (Review). Int J Mol Med 2017; 40: 587–606. https://doi.org/10.3892/IJMM.2017.3071

Cadigan KM, Waterman ML. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb Perspect Biol 2012; 4: a007906. https://doi.org/10.1101/cshperspect.a007906

Polakis P. Wnt signaling in cancer. Cold Spring Harb Persp Biol 2012; 4: 9. https://doi.org/10.1101/CSHPERSPECT.A008052

Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene 2017; 36: 1461–73. https://doi.org/10.1038/ONC.2016.304

Blagodatski A, Poteryaev D, Katanaev VL. Targeting the Wnt pathways for therapies. Mol Cell Ther 2014; 2: 28. https://doi.org/10.1186/2052-8426-2-28

Zhang X, Hao J. Development of anticancer agents targeting the Wnt/β-catenin signaling. Am J Cancer Res 2015; 5: 2344–60.

Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol 2017; 51: 1357–69. https://doi.org/10.3892/IJO.2017.4129

Prosperi JR, Luu HH, Goss KH. Dysregulation of the Wnt pathway in solid tumors. In: Goss KH, Kahn M, eds. Targeting the Wnt Pathway in Cancer. Springer, 2011: 81–128. https://doi.org/10.1007/978-1-4419-8023-6_5

Richman SD, Jasani B. Predictive biomarkers and targeted therapies in colorectal cancer. In: Badve S, Kumar GL, eds. Predictive Biomarkers in Oncology. Springer Nature Switzerland, 2019: 423–30. https://doi.org/10.1007/978-3-319-95228-4_38

Mohammed MK, Shao C, Wang J, et al. Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis 2016; 3: 11–40. https://doi.org/10.1016/J.GENDIS.2015.12.004

de Lau W, Peng WC, Gros P, Clevers H. The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength. Genes Dev 2014; 28: 305–16. https://doi.org/10.1101/GAD.235473.113

Neuzillet C, Tijeras-Raballand A, Cohen R, et al. Targeting the TGFβ pathway for cancer therapy. Pharm Ther 2015; 147: 22–31. https://doi.org/10.1016/J.PHARMTHERA.2014.11.001

Badve S, Kumar GL. Predictive Biomarkers in Oncology. Springer Nature Switzerland, 2019. https://link.springer.com/book/10.1007/978-3-319-95228-4

Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. New Engl J Med 2004; 350: 2335–42. https://doi.org/10.1056/NEJMOA032691

De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: A retrospective consortium analysis. Lancet Oncol 2010; 11: 753–62. https://doi.org/10.1016/S1470-2045(10)70130-3

Lee D-W, Han S-W, Cha Y, et al. Association between mutations of critical pathway genes and survival outcomes according to the tumor location in colorectal cancer. Cancer 2017; 123: 3513–23. https://doi.org/10.1002/cncr.30760

Dienstmann R, Connor K, Byrne AT; COLOSSUS Consortium. Precision therapy in RAS mutant colorectal cancer. Gastroenterology 2020; 158: 806–11. https://doi.org/10.1053/J.GASTRO.2019.12.051

Inamura K, Yamauchi M, Nishihara R, et al. Prognostic significance and molecular features of signet-ring cell and mucinous components in colorectal carcinoma. Ann Surg Oncol 2015; 22: 1226–35. https://doi.org/10.1245/s10434-014-4159-7

Jones RP, Sutton PA, Evans JP, et al. Specific mutations in KRAS codon 12 are associated with worse overall survival in patients with advanced and recurrent colorectal cancer. Br J Cancer 2017; 116: 923–9. https://doi.org/10.1038/bjc.2017.37

Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. New Engl J Med 2004; 351: 337–45. https://doi.org/10.1056/NEJMOA033025

Chan AT, Ogino S, Fuchs CS. Aspirin use and survival after diagnosis of colorectal cancer. JAMA 2009; 302: 649–58. https://doi.org/10.1001/jama.2009.1112

Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998; 396: 643–9. https://doi.org/10.1038/25292

Hoadley KA, Yau C, Wolf DM, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 2014; 158: 929–44. https://doi.org/10.1016/J.CELL.2014.06.049

Vogelstein B, Kinzler KW. Achilles’ heel of cancer? Nature 2001; 412: 865–6. https://doi.org/10.1038/35091170

Roth JA, Grammer SF, Swisher SG, et al. Gene replacement strategies for treating non-small cell lung cancer. Semin Radiat Oncol 2000; 10: 333–42. https://doi.org/10.1053/SRAO.2000.9127

Bischoff JR, Kirn DH, Williams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–6. https://doi.org/10.1126/science.274.5286.373

Tanaka T, Watanabe M, Yamashita K. Potential therapeutic targets of TP53 gene in the context of its classically canonical functions and its latest non-canonical functions in human cancer. Oncotarget 2018; 9: 16234–47. https://doi.org/10.18632/oncotarget.24611

Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017; 357: 409–13. https://doi.org/10.1126/science.aan6733

Hocking CM, Price TJ. Panitumumab in the management of patients with KRAS wild-type metastatic colorectal cancer. Ther Adv Gastroenterol 2014; 7: 20. https://doi.org/10.1177/1756283X13498660

Hoyle M, Crathorne L, Peters J, et al. The clinical effectiveness and cost-effectiveness of cetuximab (mono- or combination chemotherapy), bevacizumab (combination with non-oxaliplatin chemotherapy) and panitumumab (monotherapy) for the treatment of metastatic colorectal cancer after first-line chemotherapy (review of technology appraisal no. 150 and part review of technology appraisal no. 118): A systematic review and economic model. Health Technol Assess 2013; 17: 1–237. https://doi.org/10.3310/HTA17140

Ilic I, Jankovic S, Ilic M. Bevacizumab combined with chemotherapy ımproves survival for patients with metastatic colorectal cancer: evidence from meta analysis. PloS One 2016; 11: e0161912. https://doi.org/10.1371/JOURNAL.PONE.0161912

Verdaguer H, Tabernero J, Macarulla T. Ramucirumab in metastatic colorectal cancer: evidence to date and place in therapy. Ther Adv Med Oncol 2016; 8: 230. https://doi.org/10.1177/1758834016635888

Yoshino T, Komatsu Y, Yamada Y, et al. Randomized phase III trial of regorafenib in metastatic colorectal cancer: analysis of the CORRECT Japanese and non-Japanese subpopulations. Invest New Drugs 2015; 33: 740–50. https://doi.org/10.1007/S10637-014-0154-X

Perkins SL, Cole SW. Ziv-aflibercept (Zaltrap) for the treatment of metastatic colorectal cancer. Ann Pharmacother 2014; 48: 93–8. https://doi.org/10.1177/1060028013506562

Rajan A, Kim C, Heery CR, et al. Nivolumab, anti-programmed death-1 (PD-1) monoclonal antibody immunotherapy: Role in advanced cancers. Human Vaccines Immunother 2016; 12: 2219. https://doi.org/10.1080/21645515.2016.1175694

Xie Y-H, Chen Y-X, Fang J-Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 2020; 5: 1–30. https://doi.org/10.1038/s41392-020-0116-z.

Inamura K. Colorectal cancers: An update on their molecular pathology. Cancers 2018; 10: 26. https://doi.org/10.3390/cancers10010026

Alwers E, Jia M, Kloor M, et al. Associations between molecular classifications of colorectal cancer and patient survival: a systematic review. Clin Gastroenterol Hepatol 2019; 17: 402–10. e2. https://doi.org/10.1016/j.cgh.2017.12.038

##submission.downloads##

Опубліковано

26.05.2023

Як цитувати

Ебру , Н. (2023). ТЕРАПЕВТИЧНІ МІШЕНІ МОЛЕКУЛЯРНИХ СИГНАЛЬНИХ ШЛЯХІВ У КЛІТИНАХ КОЛОРЕКТАЛЬНОГО РАКУ. Експериментальна онкологія, 44(1), 2–6. https://doi.org/10.32471/exp-oncology.2312-8852.vol-44-no-1.17455