Expression of micro-RNA hsa-miR-30c-5p and hsa-miR-138-1 in renal cell carcinoma
DOI:
https://doi.org/10.32471/exp-oncology.2312-8852.vol-42-no-2.14632Ключові слова:
miR-138-1, miR-30s-5p, miRNA expression, renal cell carcinomaАнотація
Summary. Aim: To analyze the expression levels of hsa-miR-30c-5p and hsa-miR-138-1 in tumors of patients with renal cell carcinoma to determine whether they could be used as diagnostic markers. Materials and Methods: The relative expression of hsa-miR-30c-5p and hsa-miR-138-1 was compared in the paired samples of kidney tumor tissue and conventionally normal tissue adjacent to the tumor. Results: We found a significant decrease in miR-30c-5p and miR-138-1 levels in tumor tissues even in the cases of early stage cancer. In addition, miR-138-1 expression was lower in renal cell carcinoma Fuhrman grade G3 + G4 as compared to Fuhrman grade G2. However, we found no association between miR-30c-5p and miR-138-1 expression in the tumors and the major clinical and pathological characteristics of renal cell carcinoma patients. Conclusions: A significant reduction in the expression levels of hsa-miR-30c-5p and hsa-miR-138-1 in renal cell carcinoma indicates the feasibility of further studies on the probable diagnostic utility of these markers.
Посилання
Low G, Huang G, Fu W, et al. Review of renal cell carcinoma and its common subtypes in radiology. World J Radiol 2016; 8: 484–500.
Gupta K, Miller JD, Li JZ, et al. Cancer Treat Rev 2008; 34: 193–205.
Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 2013; 49: 1374–403.
Wood LS. Renal cell carcinoma: screening, diagnosis, and prognosis. Clin J Oncol Nurs 2009; 13 (Suppl): 3–7.
Lopez-Beltran A, Scarpelli M, Montironi R, Kirkali Z. 2004 WHO classification of the renal tumors of the adults. Eur Urol 2006; 49: 798–805.
Lewis DR, Chen HS, Cockburn MG, et al. Early estimates of SEER cancer incidence, 2014. Cancer 2017; 123: 2524–34.
Ljungberg B, Bensalah K, Canfield S, et al. EAU guidelines on renal cell carcinoma: the 2014 update. Eur Urol. 2015; 67: 913–24.
Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.
White NM, Bao TT, Grigull J, et al. miRNA profiling for clear cell renal cell carcinoma: biomarker discovery and identification of potential controls and consequences of miRNA dysregulation. J Urol 2011; 186: 1077–83.
Bartel DP. MicroRNAs: Target recognition and regulatory functions. Cell 2009; 136: 215–33.
Altana V, Geretto M, Pulliero A. MicroRNAs and physical activity. Microrna 2015; 4: 74–85.
Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009; 10: 704–14.
Li M, Wang Y, Song Y, et al. MicroRNAs in renal cell carcinoma: a systematic review of clinical implications (Review). Oncol Rep 2015; 33: 1571–8.
Redova M, Svoboda M, Slaby O. MicroRNAs and their target gene networks in renal cell carcinoma. Biochem Biophys Res Commun 2011; 405: 153–6.
Heinzelmann J, Unrein A, Wickmann U, et al. MicroRNAs with prognostic potential for metastasis in clear cell renal cell carcinoma: a comparison of primary tumors and distant metastases. Ann Surg Oncol 2014; 21: 1046–54.
Gowrishankar B, Ibragimova I, Zhou Y, et al. MicroRNA expression signatures of stage, grade, and progression in clear cell RCC. Cancer Biol Ther 2014; 15: 329–41.
Karbiener M, Neuhold C, Opriessnig P, et al. MicroRNA 30c promotes human adipocyte differentiation and corepresses PAI1 and ALK2. RNA Biol 2011; 8: 850–60.
Li S, Yang C, Zhai L, et al. Deep sequencing reveals small RNA characterization of invasive micropapillary carcinomas of the breast. Breast Cancer Res Treat 2012; 136: 77–87.
Presneau N, Eskandarpour M, Shemais T, et al. MicroRNA profiling of peripheral nerve sheath tumours identifies miR29c as a tumour suppressor gene involved in tumour progression. Br J Cancer 2012; 108: 964–72.
Rodríguez-González FG, Sieuwerts AM, Smid M, et al. MicroRNA-30c expression level is an independent predictor of clinical benefit of endocrine therapy in advanced estrogen receptor positive breast cancer. Breast Cancer Res Treat 2011; 127: 43–51.
Poudel S, Song J, Jin EJ, Song K. Sulfuretin-induced miR-30C selectively downregulates cyclin D1 and D2 and triggers cell death in human cancer cell lines. Biochem Biophys Res Commun 2013; 431: 572–8.
Mathew LK, Lee SS, Skuli N, et al. Restricted expression of miR-30c-2-3p and miR-30a-3p in clear cell renal cell carcinomas enhances HIF2α activity. Cancer Discov 2014; 4: 53–60.
Huang J, Yao X, Zhang J, et al. Hypoxia-induced downregulation of miR-30c promotes epithelial-mesenchymal transition in human renal cell carcinoma. Cancer Sci 2013; 104: 1609–17.
Ma F, Zhang M, Gong W, et al. MiR-138 suppresses cell proliferation by targeting Bag-1 in gallbladder carcinoma. PLoS One 2015; 10: e0126499.
Chakrabarti M, Banik NL, Ray SK. miR-138 overexpression is more powerful than hTERT knockdown to potentiate apigenin for apoptosis in neuroblastoma in vitro and in vivo. Exp Cell Res 2013; 319: 1575–85.
Mitomo S, Maesawa C, Ogasawara S, et al. Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci 2008; 99: 280–6.
Liu X, Lv XB, Wang XP, et al. MiR-138 suppressed nasopharyngeal carcinoma growth and tumorigenesis by targeting the CCND1 oncogene. Cell Cycle 2012; 11: 2495–506.
Zhao X, Yang L, Hu J, Ruan J. miR-138 might reverse multidrug resistance of leukemia cells. Leuk Res 2010; 34: 1078–82.
Gao Y, Fan X, Li W, et al. miR-138-5p reverses gefitinib resistance in non-small cell lung cancer cells via negatively regulating G protein-coupled receptor 124. Biochem Biophys Res Commun 2014; 446: 179–186.
Song T, Zhang X, Wang C, et al. MiR-138 suppressesexpressionofhypoxia-induciblefactor 1α (HIF-1α) inclearcellrenalcell carcinoma 786-O cells. Asian Pac J Cancer Prev 2011; 12: 1307–11.
Faragalla H, Youssef YM, Scorilas A, et al. The clinical utility of miR-21 as a diagnostic and prognostic marker for renal cell carcinoma. J Mol Diagn 2012; 14: 385–92.
Czech MP. MicroRNAs as therapeutic targets. N Engl J Med 2006; 354: 1194–215.
Chow TF, Mankaruos M, Scorilas A, et al. The miR-17–92 cluster is over expressed in and has an oncogenic effect on renal cell carcinoma. J Urol 2010; 183: 743–51.
Li YY, Tao YW, Gao S, et al. Cancer-associated fibroblasts contribute to oral cancer cells proliferation and metastasis via exosome-mediated paracrine miR-34a-5p. EBioMedicine 2018; 36: 209–20.
Liu C, Yang Z, Deng Z, et al. Upregulated lncRNA ADAMTS9-AS2 suppresses progression of lung cancer through inhibition of miR-223-3p and promotion of TGFBR3. IUBMB Life 2018; 70: 536–46.
Wen J, Hu Y, Liu Q, et al. miR-424 coordinates multilayered regulation of cell cycle progression to promote esophageal squamous cell carcinoma cell proliferation. EBioMedicine 2018; 37: 110–24.
Lukianova NY, Borikun TV, Chekhun VF. Tumor microenvironment-derived miRNAs as prognostic markers of breast cancer. Exp Oncol 2019; 41: 242–7.
Xiao W, Wang X, Wang T, Xing J. MiR-223-3p promotes cell proliferation and metastasis by downregulating SLC4A4 in clear cell renal cell carcinoma. Aging 2019; 11: 615–33.
Lin C, Li Z, Chen P, et al. Oncogene miR-154-5p regulates cellular function and acts as a molecular marker with poor prognosis in renal cell carcinoma. Life Sci 2018; 209: 481–9.
Yu G, Li H, Wang J, et al. miRNA-34a suppresses cell proliferation and metastasis by targeting CD44 in human renal carcinoma cells. J Urol 2014; 192: 1229–37.
Heinzelmann J, Henning B, Sanjmyatav J, et al. Specific miRNA signatures are associated with metastasis and poor prognosis in clear cell renal cell carcinoma. World J Urol 2011; 29: 367–73.
Huang J, Yao X, Zhang J, et al. Hypoxia-induced downregulation of miR-30c promotes epithelial-mesenchymal transition in human renal cell carcinoma. Cancer Sci 2013; 104: 1609–17.
Mathew LK, Lee SS, Skuli N, et al. Restricted expression of miR-30c-2-3p and miR-30a-3p in clear cell renal cell carcinomas enhances HIF2α activity. Cancer Discov. 2014; 4: 53–60.
Jia W, Eneh JO, Ratnaparkhe S, et al. MicroRNA-30c-2* expressed in ovarian cancer cells suppresses growth factor-induced cellular proliferation and downregulates the oncogene BCL9. Mol Cancer Res 2011; 9: 1732–45.
Bockhorn J, Yee K, Chang YF, et al. MicroRNA-30c targets cytoskeleton genes involved in breast cancer cell invasion. Breast Cancer Res Treat 2012; 137: 373–82.
Sha HH, Wang DD, Chen D, et al. MiR-138: A promising therapeutic target for cancer. Tumour Biol 2017; 39: 1010428317697575.
Li J, Xia W, Su X, et al. Species-specific mutual regulation of p53 and miR-138 between human, rat and mouse. Sci Rep 2016; 6: 26187.
Ljungberg B, Albiges L, Abu-Ghanem Y, et al. European Association of Urology Guidelines on renal cell carcinoma: The 2019 update. Eur Urol 2019; 75: 799–810.
Wahlgren T, Harmenberg U, Sandström P, et al. Treatment and overall survival in renal cell carcinoma: a Swedish population-based study (2000-2008). Br J Cancer 2013; 108: 1541–9.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2023 Експериментальна онкологія

Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial 4.0 International License.
