FAMILIAL NON-MEDULLARY THYROID CARCINOMA
DOI:
https://doi.org/10.15407/exp-oncology.2023.01.070Keywords:
familial non-medullary thyroidcancer, sporadic papillary carcinomasporadic papillary carcinoma, thyroidcancerAbstract
Background:Familial non-medullary thyroid carcinoma (FNMTC) is defined as cancer developing in two or more first-degree relatives if predisposing factors, for example, radiation, are absent. The disease can be either syndromic, when it is a component of complex genetic syndromes, or non-syndromic (95% cases). The genetic basis of non-syndromic FNMTC is unknown; the clinical behavior of tumorsis unclear and, at times, contradictory.Aim: To analyze clinical manifestations of FNMTC and compare them with the data for sporadic papillary thyroid carcinomas in patients of the same age groups. Materials and Methods:We examined 22 patients (a “parents” group and a “children” group) suffering from the non-syndromic FNMTC. For comparison, two groups of sporadic papillary carcinomas patients of the same age were drawn up(“adult” and “young”). We analyzed tumor size and frequency of the distributionby the categoryof TNM system, invasiveness, multifocality, metastases to lymph nodes, type and extent of surgical and radioiodine treatment, and prognosis according to the MACIS criterion. Results:Whether sporadic or familial, the tumor size, metastatic potential, and invasive potential are higher in young people, asalready known. There was no significant difference between the “parents” and “adult” groups of patients in terms of tumor parameters. One exception was the higher frequency of multifocal tumors in the FNMTC patients. Meanwhile, compared to the “young” sporadic papillary carcinomas patients, the FNMTC “children” had a higher frequency of T2 tumors, metastasizing (N1a–N1ab), and multifocal tumors, but a lower frequency of carcinomas with intrathyroidal invasions.In the FNMTC “children” compared to FNMTC “parents” was a higher frequency of T2 tumors, metastasizing carcinomas, and tumors with capsular invasion. Conclusion:FNMTC carcinomas are more aggressive than sporadic ones, especially in patients who are first-degree relatives in a family with parents already diagnosed with the disease.
References
Burgess J, Duffield A, Wilkinson S, et al. Two families with an autosomal dominant inheritance pattern for papillary carcinoma of the thyroid. J Clin Endocrinol Metab 1997;82: 345–348. doi: 10.1210/jcem.82.2.3789
Robinson D, Orr T. Carcinoma of the thyroid andother diseases of the thyroid in identical twins. AMA Arch Surg1955; 70:923–928. doi: 10.1001/archsurg.1955.01270120131015
Xu B, Ghossein R. Evolution of the histologic classification of thyroid neoplasms and its impact on clinical management. Eur J Surg Oncol 2018; 44: 338–347. doi: 10.1016/j.ejso.2017.05.002
Mazeh H, Sippel R. Familial nonmedullary thyroid carcinoma. Thyroid 2013; 23: 1049–1056. doi: 10.1089/thy.2013.0079
Sinclair T, Kebebew E. Chapter 4 – Familial Nonmedullary Thyroid Cancer,Editor(s): A. Shifrin. Advances in Treatment and Management in Surgical Endocrinology.Elsevier. 2020; 35-48.https://doi.org/10.1016/B978-0-323-66195-9.00004-2
Capezzone M, Fralassi N, Secchi C, et al. Long-term clinical outcome in familial and sporadic papillarythyroid carcinoma. Eur Thyroid J 2020; 9: 213–220. doi: 10.1159/000506955
Malchoff C, Malchoff D. Familial nonmedullary thyroid carcinoma. Cancer Control 2006; 13: 106–110. doi: 10.1177/107327480601300204
Charkes N. On the prevalence of familial nonmedullary thyroid cancer in multiply affected kindreds. Thyroid 2006; 16: 181–186. doi: 10.1089/thy.2006.16.181
Zhou Y, Luo H, Gou J, et al. Second generation of familial nonmedullary thyroid carcinoma: A meta-analysis on the clinicopathologic features and prognosis. Eur J Surg Oncol 2017;43:2248–2256. doi: 10.1016/j.ejso.2017.09.005
Orois A, Mora M, Halperin I, Oriola J. Familial non medullary thyroid carcinoma: Beyond the syndromic forms. Endocrinol Diabetes Nutr (Engl Ed) 2021; 68: 260–269. doi: 10.1016/j.endinu.2020.08.002
Carbone M, Arron S, Beutler B, et al. Tumour predisposition and cancer syndromes as models to study gene-environment interactions. Nat Rev Cancer 2020;20: 533–549. doi: 10.1038/s41568-020-0265-y
Cameselle-Teijeiro J, Mete O, Asa S, LiVolsi V. Inherited follicular epithelial-derived thyroid carcinomas: from molecular biology to histological correlates. Endocr Pathol 2021; 32: 77–101. doi: 10.1007/s12022-020-09661-y
Dotto J, Nose V. Familial thyroid carcinoma: a diagnostic algorithm.Adv Anat Pathol 2008;15:332–349. doi: 10.1097/PAP.0b013e31818a64af
Kim Y, Seo M, Park S, et al. Should total thyroidectomybe recommended for patients with familial nonmedullarythyroid cancer? World J Surg 2020; 44: 3022–3027. doi: 10.1007/s00268-020-05473-7
Capezzone M, Robenshtok E, Cantara S, Castagna M. Familial non-medullary thyroid cancer: a critical review. J Endocrinol Invest 2021; 44: 943–950. doi: 10.1007/s40618-020-01435-x
Srivastava A, Kumar A, Giangiobbe S, et al. Whole genome sequencing of familial non-medullary thyroid cancer identifies germline alterations in MAPK/ERK and PI3K/AKT Signaling Pathways. Biomolecules 2019; 9: 605. doi: 10.3390/biom9100605
Capezzone M, Marchisotta S, Cantara S, et al. Familial non-medullary thyroid carcinomadisplays the features of clinical anticipation suggestive ofa distinct biological entity. Endocr Relat Cancer 2008; 15: 1075–1078. doi: 10.1677/ERC-08-0080
Gara S, Jia L, Merino M, et al. Germline HABP2 mutation causing familial nonmedullary thyroid cancer. N Engl J Med 2015; 373: 448–455. doi: 10.1056/NEJMoa1502449
Tomsic J, He H, Akagi K, et al. A germline mutation in SRRM2, a splicing factor gene, is implicated in papillary thyroid carcinoma predisposition. Sci Rep 2015;5:10566. doi: 10.1038/srep10566
Li J, An C, Zheng H, et al. Leukocyte telomere length andrisk of papillary thyroid carcinoma. J Clin Endocrinol Metab2019; 104: 2712–2718. doi: 10.1210/jc.2018-02471
Sańchez-Ares M, Cameselle-Garćıa S,Abdulkader-Nallib I,et al. Susceptibility genes andchromosomal regions associatedwith non-syndromic familial non-medullary thyroid carcinoma: somepathogenetic and diagnostic keys.Front Endocrinol 2022;13: 829103.doi: 10.3389/fendo.2022.829103
Hińcza K, Kowalik A, KowalskaA.Current knowledge of germline genetic risk factorsfor the development of non-medullarythyroid cancer. Genes 2019;10:482. doi:10.3390/genes10070482
Miasaki F, Fuziwara C, Carvalho G, Kimura E. Genetic mutations and variants in the susceptibility of familial non-medullary thyroid cancer. Genes (Basel) 2020; 11: 1364. doi: 10.3390/genes11111364
Kamani T, Charkhchi P, Zahedi A. AkbariM.Genetic susceptibility to hereditary non-medullary thyroid cancer. Hered Cancer Clin Pract 2022; 20: 9.doi: 10.1186/s13053-022-00215-3
Peiling Yang S, Ngeow J. Familial non-medullary thyroid cancer: unraveling the genetic maze. Endocr Relat Cancer 2016;23:R577–R595. doi: 10.1530/ERC-16-0067
Haddad R, Nasr C, Bischoff L, et al. NCCNguidelines insights: Thyroid carcinoma, version 2.2018. J Natl Compr CancerNetw 2018; 16: 1429–1440. doi: 10.6004/jnccn.2018.0089
Filetti S, Durante C, Hartl D, et al.Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatmentand follow-up. Ann Oncol 2019; 30: 1856–1883. doi: 10.1093/annonc/mdz400
Haugen B, Alexander E, Bible K, et al. 2015 American Thyroid Association management guidelines for adultpatients with Thyroid nodules and differentiated Thyroid Cancer: theAmerican Thyroid Association guidelines task force on Thyroid nodules anddifferentiated Thyroid Cancer. Thyroid 2016; 26: 1–133. doi: 10.1089/thy.2015.0020
Furuya-Kanamori L, Bell K, Clark J, et al. Prevalence of differentiated thyroid cancer in autopsy studies over six decades: A meta-analysis. J Clin Oncol 2016; 34: 3672–3679. doi: 10.1200/JCO.2016.67.7419
Ríos A, Rodríguez J, Navas D, et al. Family screening in familial papillarycarcinoma: the early detection of thyroid disease. Ann SurgOncol 2016; 23: 2564–2570. doi: 10.1245/s10434-016-5149-8
Klubo-Gwiezdzinska J, Yang L, Merkel R, et al. Results of screening in familial non-medullary thyroid cancer. Thyroid 2017; 27: 1017–1024. doi: 10.1089/thy.2016.0668
Sadowski S, He M, Gesuwan K, et al. Prospective screening in familial nonmedullary thyroid cancer. Surgery 2013; 154: 1194–1198. doi: 10.1016/j.surg.2013.06.019
Tavarelli M, Russo M, Terranova R, et al. Familial non-medullary thyroid cancer represents an independent risk factor for increased cancer aggressiveness: a retrospective analysis of 74 families. Front Endocrinol 2015; 6: 117. doi: 10.3389/fendo.2015.00117
Rosario P, Mourão G. Ultrasonography screening in children and adolescents who have one parent with familial non-medullary thyroid carcinoma. J Paediatr Child Health 2022. doi: 10.1111/jpc.16215
Wang X, Cheng W, Li J, et al. Endocrine tumours: familial nonmedullary thyroid carcinoma is a more aggressive disease: a systematic review and meta-analysis. Eur J Endocrinol 2015. 172: R253–R262. doi: 10.1530/EJE-14-0960
El Lakis M, Giannakou A, Nockel P, et al. Do patients with familial nonmedullary thyroid cancer present with more aggressive disease? Implications for initial surgical treatment. Surgery 2019;165:50–57. doi: 10.1016/j.surg.2018.05.075
Maximo V, Botelho T, Capela J, et al. Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolismand cell death, is linked to mitochondrion-rich (Hurthle cell)tumours of the thyroid. Br J Cancer 2005; 92: 1892–1898. doi: 10.1038/sj.bjc.6602547
Sung T, Lee Y, Yoon J, et al. Surgicalmanagement of familial papillary thyroid microcarcinoma: A single institution study of 94 cases. World J Surg2015; 39: 1930–1935. doi: 10.1007/s00268-015-3064-y
Alsanea O, Wada N, Ain K, et al. Is familial non-medullary thyroid carcinoma more aggressive than sporadic thyroid cancer? A multicenter series. Surgery 2000;128:1043–1050;discussion 1050–1051. doi: 10.1067/msy.2000.11084.
Robenshtok E, Tzvetov G, Grozinsky-Glasberg S,et al. Clinical characteristics and outcome of familial nonmedullary thyroid cancer: a retrospective controlled study. Thyroid 2011;21: 43–48.doi: 10.1089/thy.2009.0406
Maxwell E, Hall F, Freeman J. Familial non-medullarythyroid cancer: a matched-case control study. The Laryngoscope 2004;114: 2182–2186. doi: 10.1097/01.mlg.0000149454.91005.65
Cao J, Chen C, Chen C, et al. Clinicopathological features and prognosis of familial papillary thyroid carcinoma – a large-scale, matched, case-control study. Clin Endocrinol (Oxf) 2016; 84: 598–606. doi: 10.1111/cen.12859
Guda B.Associations between prognostic factors determining the survival of thyroidpapillary carcinoma patients. Inter J Med Sci Clin Invent 2019; 6: 4539–4543. doi:10.18535/ijmsci/v6i8.02
Tronko M, Shpak V, Bogdanova T, et al.Chapter 3.Epidemiology of thyroid cancer in Ukraine after Chernobyl.Thyroid cancer in Ukraine after Chernobyl: dosimetry, epidemiology, pathology, molecular biology.Editors M Tronko, T Bogdanova, V Saenko, G Thomas, I Likhtarov, S Yamashita. IN-TEX, Nagasaki, Japan. 2014:39-64.ISBN 4-931481-08-6
Hay I, Bergstralh E, Goellner J, et al. Predicting outcome in papillary thyroid carcinoma: development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989. Surgery 1993;114:1050–1057.PMID: 8256208
Valerio L, Cantara S, Puxeddu E, Castagna M. Editorial: non-syndromic familial non-medullary thyroid carcinoma: clinical and genetic update. Front Endocrinol (Lausanne) 2022; 13: 891903. doi: 10.3389/fendo.2022.891903
Guilmette J, Nosé V. Hereditary and familial thyroid tumours. Histopathology 2018, 72: 70–81.doi: 10.1111/his.13373
Diquigiovanni C, Bonora E. Genetics of familial non-medullary thyroid carcinoma (FNMTC). Cancers (Basel). 2021; 13: 2178. doi: 10.3390/cancers13092178
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Experimental Oncology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.