THERAPEUTIC TARGETING OF MOLECULAR PATHWAYS IN COLORECTAL CANCER
DOI:
https://doi.org/10.32471/exp-oncology.2312-8852.vol-44-no-1.17455Keywords:
colorectal cancer drugs, CRC signaling pathways, molecular targeted therapy, tumor biomarkersAbstract
Mutations in tumor suppressor genes, cell signaling, and genes associated with DNA repair lead to onset of colorectal cancer (CRC). Even though most CRC patients get clinical benefits from conventional treatments such as chemotherapy and radiotherapy, treatment success is still not at the desired level despite recent advances in CRC treatments. Therefore, further elucidation of the molecular signaling pathways involved in CRC progression will allow developing targeted therapies. With the detection of signaling pathways that lead to cancer progression and development of the successful treatment methods targeting these pathways, the progression of the disease can be prevented. This review provides an overview of the therapeutic roles of potential molecular targets in recent preclinical and clinical studies in CRC treatment.
References
Arnold M, Sierra MS, Laversanne M, et al. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017; 66: 683–91. https://doi.org/10.1136/gutjnl-2015-310912
Mármol I, Sánchez-de-Diego C, Dieste AP, et al. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int J Mol Sci 2017; 18. https://doi.org/10.3390/ijms18010197
Meltzer SJ, Ahnen DJ, Battifora H, et al. Protooncogene abnormalities in colon cancers and adenomatous polyps. Gastroenterology 1987; 92: 1174–80. https://doi.org/10.1016/s0016-5085(87)91074-2
Forrester K, Almoguera C, Han K, et al. Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature 1987; 327: 298–303. https://doi.org/10.1038/327298a0
Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. New England J Med 1988; 319: 525–32. https://doi.org/10.1056/NEJM198809013190901
Losi L, Benhattar J, Costa J. Stability of K-ras mutations throughout the natural history of human colorectal cancer. Eur J Cancer 1992; 28A: 1115–20. https://doi.org/10.1016/0959-8049(92)90468-h
Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology 2010; 138: 2059–72. https://doi.org/10.1053/j.gastro.2009.12.065
Wood LD, Parsons DW, Jones S, et al. The genomic landscapes of human breast and colorectal cancers. Science 2007; 318: 1108–13. https://doi.org/10.1126/SCIENCE.1145720
Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487: 330–7. https://doi.org/10.1038/nature11252
Fodde R. The APC gene in colorectal cancer. Eur J Cancer 2002; 38: 867–71. https://doi.org/10.1016/S0959-8049(02)00040-0
Tran FH, Zheng JJ. Modulating the wnt signaling pathway with small molecules. Protein Sci: 2017; 26: 650–61. https://doi.org/10.1002/PRO.3122
Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 2013; 13: 11–26. https://doi.org/10.1038/NRC3419
Katoh M, Katoh M. Molecular genetics and targeted therapy of WNT-related human diseases (Review). Int J Mol Med 2017; 40: 587–606. https://doi.org/10.3892/IJMM.2017.3071
Cadigan KM, Waterman ML. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb Perspect Biol 2012; 4: a007906. https://doi.org/10.1101/cshperspect.a007906
Polakis P. Wnt signaling in cancer. Cold Spring Harb Persp Biol 2012; 4: 9. https://doi.org/10.1101/CSHPERSPECT.A008052
Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene 2017; 36: 1461–73. https://doi.org/10.1038/ONC.2016.304
Blagodatski A, Poteryaev D, Katanaev VL. Targeting the Wnt pathways for therapies. Mol Cell Ther 2014; 2: 28. https://doi.org/10.1186/2052-8426-2-28
Zhang X, Hao J. Development of anticancer agents targeting the Wnt/β-catenin signaling. Am J Cancer Res 2015; 5: 2344–60.
Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol 2017; 51: 1357–69. https://doi.org/10.3892/IJO.2017.4129
Prosperi JR, Luu HH, Goss KH. Dysregulation of the Wnt pathway in solid tumors. In: Goss KH, Kahn M, eds. Targeting the Wnt Pathway in Cancer. Springer, 2011: 81–128. https://doi.org/10.1007/978-1-4419-8023-6_5
Richman SD, Jasani B. Predictive biomarkers and targeted therapies in colorectal cancer. In: Badve S, Kumar GL, eds. Predictive Biomarkers in Oncology. Springer Nature Switzerland, 2019: 423–30. https://doi.org/10.1007/978-3-319-95228-4_38
Mohammed MK, Shao C, Wang J, et al. Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes Dis 2016; 3: 11–40. https://doi.org/10.1016/J.GENDIS.2015.12.004
de Lau W, Peng WC, Gros P, Clevers H. The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength. Genes Dev 2014; 28: 305–16. https://doi.org/10.1101/GAD.235473.113
Neuzillet C, Tijeras-Raballand A, Cohen R, et al. Targeting the TGFβ pathway for cancer therapy. Pharm Ther 2015; 147: 22–31. https://doi.org/10.1016/J.PHARMTHERA.2014.11.001
Badve S, Kumar GL. Predictive Biomarkers in Oncology. Springer Nature Switzerland, 2019. https://link.springer.com/book/10.1007/978-3-319-95228-4
Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. New Engl J Med 2004; 350: 2335–42. https://doi.org/10.1056/NEJMOA032691
De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: A retrospective consortium analysis. Lancet Oncol 2010; 11: 753–62. https://doi.org/10.1016/S1470-2045(10)70130-3
Lee D-W, Han S-W, Cha Y, et al. Association between mutations of critical pathway genes and survival outcomes according to the tumor location in colorectal cancer. Cancer 2017; 123: 3513–23. https://doi.org/10.1002/cncr.30760
Dienstmann R, Connor K, Byrne AT; COLOSSUS Consortium. Precision therapy in RAS mutant colorectal cancer. Gastroenterology 2020; 158: 806–11. https://doi.org/10.1053/J.GASTRO.2019.12.051
Inamura K, Yamauchi M, Nishihara R, et al. Prognostic significance and molecular features of signet-ring cell and mucinous components in colorectal carcinoma. Ann Surg Oncol 2015; 22: 1226–35. https://doi.org/10.1245/s10434-014-4159-7
Jones RP, Sutton PA, Evans JP, et al. Specific mutations in KRAS codon 12 are associated with worse overall survival in patients with advanced and recurrent colorectal cancer. Br J Cancer 2017; 116: 923–9. https://doi.org/10.1038/bjc.2017.37
Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. New Engl J Med 2004; 351: 337–45. https://doi.org/10.1056/NEJMOA033025
Chan AT, Ogino S, Fuchs CS. Aspirin use and survival after diagnosis of colorectal cancer. JAMA 2009; 302: 649–58. https://doi.org/10.1001/jama.2009.1112
Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998; 396: 643–9. https://doi.org/10.1038/25292
Hoadley KA, Yau C, Wolf DM, et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 2014; 158: 929–44. https://doi.org/10.1016/J.CELL.2014.06.049
Vogelstein B, Kinzler KW. Achilles’ heel of cancer? Nature 2001; 412: 865–6. https://doi.org/10.1038/35091170
Roth JA, Grammer SF, Swisher SG, et al. Gene replacement strategies for treating non-small cell lung cancer. Semin Radiat Oncol 2000; 10: 333–42. https://doi.org/10.1053/SRAO.2000.9127
Bischoff JR, Kirn DH, Williams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–6. https://doi.org/10.1126/science.274.5286.373
Tanaka T, Watanabe M, Yamashita K. Potential therapeutic targets of TP53 gene in the context of its classically canonical functions and its latest non-canonical functions in human cancer. Oncotarget 2018; 9: 16234–47. https://doi.org/10.18632/oncotarget.24611
Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017; 357: 409–13. https://doi.org/10.1126/science.aan6733
Hocking CM, Price TJ. Panitumumab in the management of patients with KRAS wild-type metastatic colorectal cancer. Ther Adv Gastroenterol 2014; 7: 20. https://doi.org/10.1177/1756283X13498660
Hoyle M, Crathorne L, Peters J, et al. The clinical effectiveness and cost-effectiveness of cetuximab (mono- or combination chemotherapy), bevacizumab (combination with non-oxaliplatin chemotherapy) and panitumumab (monotherapy) for the treatment of metastatic colorectal cancer after first-line chemotherapy (review of technology appraisal no. 150 and part review of technology appraisal no. 118): A systematic review and economic model. Health Technol Assess 2013; 17: 1–237. https://doi.org/10.3310/HTA17140
Ilic I, Jankovic S, Ilic M. Bevacizumab combined with chemotherapy ımproves survival for patients with metastatic colorectal cancer: evidence from meta analysis. PloS One 2016; 11: e0161912. https://doi.org/10.1371/JOURNAL.PONE.0161912
Verdaguer H, Tabernero J, Macarulla T. Ramucirumab in metastatic colorectal cancer: evidence to date and place in therapy. Ther Adv Med Oncol 2016; 8: 230. https://doi.org/10.1177/1758834016635888
Yoshino T, Komatsu Y, Yamada Y, et al. Randomized phase III trial of regorafenib in metastatic colorectal cancer: analysis of the CORRECT Japanese and non-Japanese subpopulations. Invest New Drugs 2015; 33: 740–50. https://doi.org/10.1007/S10637-014-0154-X
Perkins SL, Cole SW. Ziv-aflibercept (Zaltrap) for the treatment of metastatic colorectal cancer. Ann Pharmacother 2014; 48: 93–8. https://doi.org/10.1177/1060028013506562
Rajan A, Kim C, Heery CR, et al. Nivolumab, anti-programmed death-1 (PD-1) monoclonal antibody immunotherapy: Role in advanced cancers. Human Vaccines Immunother 2016; 12: 2219. https://doi.org/10.1080/21645515.2016.1175694
Xie Y-H, Chen Y-X, Fang J-Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 2020; 5: 1–30. https://doi.org/10.1038/s41392-020-0116-z.
Inamura K. Colorectal cancers: An update on their molecular pathology. Cancers 2018; 10: 26. https://doi.org/10.3390/cancers10010026
Alwers E, Jia M, Kloor M, et al. Associations between molecular classifications of colorectal cancer and patient survival: a systematic review. Clin Gastroenterol Hepatol 2019; 17: 402–10. e2. https://doi.org/10.1016/j.cgh.2017.12.038
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Experimental Oncology

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
