ALPHA-TOCOPHEROL AND G-CSF CHANGE EXPRESSION OF GENES ASSOCIATED WITH DIFFERENTIATION OF K562 CHRONIC MYELOID LEUKEMIA CELLS DOWNREGULATING EMT-ASSOCIATED STEMNESS BIOMARKERS
DOI:
https://doi.org/10.15407/exp-oncology.2025.02.181Keywords:
chronic myeloid leukemia, K562 cells, myeloid differentiation therapy, G-CSF, alpha-tocopherolAbstract
Background. Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by a block of myeloid differentiation, finally resulting in the uncontrolled expansion of CML stem cells in a phase of blast crisis of the disease. Tyrosine kinase inhibitors (TKI) are effective in delaying CML progression for a long time. Nevertheless, CML cells become resistant to TKI over time. Therefore, the search for alternative and complementary therapies, including differentiation therapy, is currently in the limelight. The aim of the study was to explore the differentiation potential of alpha-tocopherol and granulocyte-colony stimulating factor (G-CSF) by analyzing the gene expression of several factors critical for myeloid differentiation of K562 CML cells, as well as some key leukemic stemness transcription factors. Materials and Methods. The mRNA expression of C/EBPα (CCAAT/enhancer binding protein alpha), neutrophil-granulocytic factor TNAP (tissue non-specific alkaline phosphatase), E-cadherin, SNAIL, OCT4, and PLAP (placental-like alkaline phosphatase) was studied by qRT-PCR in K562 cells exposed to alpha-tocopherol or G-CSF. Results. K562 cell exposure to alpha-tocopherol or G-CSF resulted in the CEBPB, CDH1, and ALPL gene upregulation. At the same time, down-regulation of EMT-associated markers SNAIL, PLAP, and OCT4 (SNAI1, ALPP, and POU5F1 genes) was demonstrated. Conclusion. The inverse relationship between expression of the genes of leukemic stemness cell markers SNAIL, OCT4, and PLAP and the genes of myeloid differentiation markers C/EBPα, TNAP, and E-cadherin in K562 cells exposed to alpha-tocopherol or G-CSF suggests the activation of the molecular pattern of myeloid differentiation in this setting.
References
Shtivelman E, Lifshitz B, Gale RP, et al. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia.
Nature. 1985;315(6020):550-554. https://doi.org/10.1038/315550a0
Sayyler V, Griffin JD. Molecular mechanisms of transformation by the BCR-ABL oncogene. Semin Hematol.
;40:4-10. https://doi.org/10.1053/shem.2003.50034
Quintàs-Cardama A, Cortes J. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 2009;113:1619- 1630. https://doi.org/10.1182/blood-2008-03-144790
Pophali PA, Patnaik MM. The role of new tyrosine kinase inhibitors in chronic myeloid leukemia. Cancer J. 2016;22(1):40-50. https://doi.org/10.1097/PPO.0000000000000165
Jain P, Kantarjian H, Patel KP, et al. Impact of BCR-ABL transcript type on outcome in patients with chronic- phase CML treated with tyrosine kinase inhibitors. Blood. 2016;127(10):1269-1275. https://doi.org/10.1182/ blood-2015-10-674242
Castagnetti F, Gugliotta G, Breccia M, et al. Long-term outcome of chronic myeloid leukemia patients treated front- line with imatinib. Leukemia. 2015;29(9):1823-1831. https://doi.org/10.1038/leu.2015.152
Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293(5531):876-880. https://doi.org/10.1126/science.1062538
Jabbour E, Parikh SA, Kantarjian H, et al. Chronic myeloid leukemia: mechanisms of resistance and treatment.
Hematol Oncol Clin North Am. 2011;25(5):981-995. https://doi.org/10.1016/j.hoc.2011.09.004
Houshmand M, Simonetti G, Circosta P, et al. Chronic myeloid leukemia stem cells. Leukemia. 2019;33:1543-1556. https://doi.org/10.1038/s41375-019-0490-0
Vetrie D, Helgason GV, Copland M. The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nat Rev Cancer. 2020;20(3):158-173. https://doi.org/10.1038/s41568-019-0230-9]
Xie X, Feng M, Wang Q, et al. Cellular and molecular state of myeloid leukemia stem cells. Adv Exp Med Biol. 2019;1143:41-57. https://doi.org/10.1007/978-981-13-7342-8_2
Hamilton A, Helgason GV, Schemionek M, Zhang B, Myssina S, Allan EK, et al. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood. 2012;2119:1501-1510. https://doi. org/10.1182/blood-2010-12-326843
Chomel JC, Turhan AG. Chronic myeloid leukemia stem cells in the era of targeted therapies: Resistance, persis- tence and long-term dormancy. Oncotarget. 2011;2:713-727. https://doi.org/10.18632/oncotarget.333
Mojtahedi H, Yazdanpanah N, Rezaiel N. Chronic myeloid leukemia stem cells: targeting therapeutic implications.
Stem Cell Res Ther. 2021;12:603. https://doi.org/10.1186/s13287-021-02659-1
Nelson DA. The biology of myelopoiesis. Clin Lab Med. 1990;10(4):649-659. PMID: 2272167
Porse BT, Bryder D, Theilgaard-Mönch K, et al. Loss of C/EBP alpha cell cycle control increases myeloid pro- genitor proliferation and transforms the neutrophil granulocyte lineage. J Exp Med. 2005;202(1):85-96. https://doi. org/10.1084/jem.20050067
Wagner K, Zhang Pu, Rosenbauer F, et al. Absence of the transcription factor CCAAT enhancer binding protein al- pha results in loss of myeloid identity in bcr/abl-induced malignancy. Proc Natl Acad Sci U S A. 2006;103(16):6338- 6343. https://doi.org/10.1073/pnas.0508143103
Tavor S, Park DJ, Gery S, et al. Restoration of C/EBP expression in a BCR-ABL+ cell line induces terminal granu- locytic differentiation. J Biol Chem. 2003;278(52):52651-52659. https://doi.org/10.1074/jbc.M307077200
Pulikkan JA, Tenen DG, Behre G. C/EBPderegulation as a paradigm for leukemogenesis. Leukemia. 2017;31(11): 2279-2285. https://doi.org/10.1038/leu.2017.229
Shvachko LP, Zavelevich MP, Gluzman DF, Telegeev GD. Vitamin E induces transcription factor C/EBP alpha and G-CSFR in K562 cells. Exp Oncol. 2018;40(4):328-331.
McKinstry WJ, Li CL, Rasko JE, et al. Cytokine receptor expression on hematopoietic stem and progenitor cells.
Blood. 1997;89(1):65-71. PMID: 8978278
Semerad GL, Liu F, Gregory AD, et al. G-CSF is an essential regulator of neutrophil trafficking from the bone mar- row to the blood. Immunity. 2002;17(4):413-423. https://doi.org/10.1016/s1074-7613(02)00424-7
Greenbaum AM, Link DC. Mechanisms of G-CSF-mediated hematopoietic stem and progenitor mobilization. Leu- kemia. 2011;25(2):211-217. https://doi.org/10.1038/leu.2010.248
Ji SQ, Chen HR, Wang HX, et al. Comparison of outcome of allogeneic bone marrow transplantation with and without granulocyte colony-stimulating factor (lenograstim) donor-marrow priming in patients with chronic myelogenous leukemia. Biol Blood Marrow Transplant. 2002;8(5):261-267. https://doi.org/10.1053/bbmt.2002.v8.pm12064363
Richards MK, Liu F, Iwasaki H, et al. Pivotal role of granulocyte colony-stimulating factor in the develop- ment of progenitors in the common myeloid pathway. Blood. 2003;102(10):3562-3568. https://doi.org/10.1182/ blood-2003-02-0593
Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425:841-846. https://doi.org/10.1038/nature02040
Taichman RS, Emerson SG. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med. 1994;179:1677-1682. https://doi.org/10.1084/jem.179.5.1677
Fulzele K, Krause DS, Panaroni C, et al. Myelopoiesis is regulated by osteocytes through Gs -dependent signaling.
Blood. 2013;121(6):930-939. https://doi.org/10.1182/blood-2012-06-437160
Nakamura T, Nakamura-Takashi A, Kasahara M, et al. Tissue-nonspecific alkaline phosphatase promotes the os- teogenic differentiation of osteoprogenitor cells. Biochem Biophys Res Commun. 2020;524(3):702-709. https://doi. org/10.1016/j.bbrc.2020.01.136
Udristioiu A, Iliescu RG, Cojocaru M, Joanta A. Alkaline phosphatase isoenzymes and leukocyte alkaline phospha- tase score in patients with acute and chronic disease: a brief review. J Adv Med Med Res. 2014;4(1):340-350. https:// doi.org/10.9734/BJMMR/2014/3309
Shvachko LP, Zavelevich MP, Gluzman DF, Telegeev GD. Aberrant expression of placental-like alkaline phospha- tase (PLAP) in chronic leukemia cells in vitro and its modulation by vitamin E. Exp Oncol. 2020;42(1):1-4. https:// doi.org/10.32471/exp-oncology.2312-8852.vol-42-no-1.14285
Fishman WH. Clinical and biological signifi ance of an isoenzyme tumor marker-PLAP. Clin Biochem. 1987;20:387-392.
Su Y, Zhang X, Bidlingmaier S, et al. ALPPL2 is a highly specific and targetable tumor cell surface antigen. Cancer Res. 2020;80(20):4552-4564. https://doi.org/10.1158/0008-5472.CAN-20-1418
Pećina-Slaus N. Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell Int. 2003;3:17. https://doi.org/10.1186/1475-2867-3-17.
Zhou ZL, Ma J, Tong MH, et al. Nanomechanical measurement of adhesion and migration of leukemia cells with phorbol 12-myristate 13-acetate treatment. Int J Nanomedicine. 2016;11:6533-6545. https://doi.org/10.2147/IJN. S118065
Acs G, LiVolsi VA. Loss of membrane expression of E-cadherin in leukemic erythroblasts. Arch Pathol Lab Med. 2001;125(2):198-201. https://doi.org/10.5858/2001-125-0198-LOMEOE
Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20:69-84. https://doi.org/10.1038/s41580-018-0080-4
Cano A, Pérez-Moreno MA, Rodrigo I, et al. The transcription factor SNAIL controls epithelial-mesenchymal transition by repressing E-cadherin expression. Nat Cell Biol. 2000;2(2):76-83. https://doi.org/10.1038/35000025
Chen SC, Liao TT, Yang MH. Emerging roles of epithelial-mesenchymal transition in hematological malignancies.
J Biomed Sci. 2018;25:37. https://doi.org/10.1186/s12929-018-0440-6
Carmichael CL, Wang J, Nguyen T, et al. (2020). The EMT modulator SNAI1 contributes to AML pathogenesis via its interaction with LSD1. Blood. 2020;136(8):957-973. https://doi.org/10.1182/blood.2019002548
Dong CY, Liu XY, Wang N, et al. Twist-1, a novel regulator of hematopoietic stem cell self-renewal and myeloid lineage development. Stem Cells. 2014;32(12):3173-3182. https://doi.org/10.1002/stem.1803
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Experimental Oncology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.