ALPHA-TOCOPHEROL AND G-CSF CHANGE EXPRESSION OF GENES ASSOCIATED WITH DIFFERENTIATION OF K562 CHRONIC MYELOID LEUKEMIA CELLS DOWNREGULATING EMT-ASSOCIATED STEMNESS BIOMARKERS

Authors

  • L. Shvachko Institute of Molecular Biology and Genetics, the NAS of Ukraine, Kyiv, Ukraine
  • M. Zavelevich R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, the NAS of Ukraine, Kyiv, Ukraine
  • M. Dybkov Institute of Molecular Biology and Genetics, the NAS of Ukraine, Kyiv, Ukraine
  • I. Gartovska Kyiv Regional Oncology Center, Center for Hematology and Bone Marrow Transplantation, Kyiv, Ukraine
  • G. Telegeev Institute of Molecular Biology and Genetics, the NAS of Ukraine, Kyiv, Ukraine

DOI:

https://doi.org/10.15407/exp-oncology.2025.02.181

Keywords:

chronic myeloid leukemia, K562 cells, myeloid differentiation therapy, G-CSF, alpha-tocopherol

Abstract

Background. Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by a block of myeloid differentiation, finally resulting in the uncontrolled expansion of CML stem cells in a phase of blast crisis of the disease. Tyrosine kinase inhibitors (TKI) are effective in delaying CML progression for a long time. Nevertheless, CML cells become resistant to TKI over time. Therefore, the search for alternative and complementary therapies, including differentiation therapy, is currently in the limelight. The aim of the study was to explore the differentiation potential of alpha-tocopherol and granulocyte-colony stimulating factor (G-CSF) by analyzing the gene expression of several factors critical for myeloid differentiation of K562 CML cells, as well as some key leukemic stemness transcription factors. Materials and Methods. The mRNA expression of C/EBPα (CCAAT/enhancer binding protein alpha), neutrophil-granulocytic factor TNAP (tissue non-specific alkaline phosphatase), E-cadherin, SNAIL, OCT4, and PLAP (placental-like alkaline phosphatase) was studied by qRT-PCR in K562 cells exposed to alpha-tocopherol or G-CSF. Results. K562 cell exposure to alpha-tocopherol or G-CSF resulted in the CEBPB, CDH1, and ALPL gene upregulation. At the same time, down-regulation of EMT-associated markers SNAIL, PLAP, and OCT4 (SNAI1, ALPP, and POU5F1 genes) was demonstrated. Conclusion. The inverse relationship between expression of the genes of leukemic stemness cell markers SNAIL, OCT4, and PLAP and the genes of myeloid differentiation markers C/EBPα, TNAP, and E-cadherin in K562 cells exposed to alpha-tocopherol or G-CSF suggests the activation of the molecular pattern of myeloid differentiation in this setting.

References

Shtivelman E, Lifshitz B, Gale RP, et al. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia.

Nature. 1985;315(6020):550-554. https://doi.org/10.1038/315550a0

Sayyler V, Griffin JD. Molecular mechanisms of transformation by the BCR-ABL oncogene. Semin Hematol.

;40:4-10. https://doi.org/10.1053/shem.2003.50034

Quintàs-Cardama A, Cortes J. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 2009;113:1619- 1630. https://doi.org/10.1182/blood-2008-03-144790

Pophali PA, Patnaik MM. The role of new tyrosine kinase inhibitors in chronic myeloid leukemia. Cancer J. 2016;22(1):40-50. https://doi.org/10.1097/PPO.0000000000000165

Jain P, Kantarjian H, Patel KP, et al. Impact of BCR-ABL transcript type on outcome in patients with chronic- phase CML treated with tyrosine kinase inhibitors. Blood. 2016;127(10):1269-1275. https://doi.org/10.1182/ blood-2015-10-674242

Castagnetti F, Gugliotta G, Breccia M, et al. Long-term outcome of chronic myeloid leukemia patients treated front- line with imatinib. Leukemia. 2015;29(9):1823-1831. https://doi.org/10.1038/leu.2015.152

Gorre ME, Mohammed M, Ellwood K, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293(5531):876-880. https://doi.org/10.1126/science.1062538

Jabbour E, Parikh SA, Kantarjian H, et al. Chronic myeloid leukemia: mechanisms of resistance and treatment.

Hematol Oncol Clin North Am. 2011;25(5):981-995. https://doi.org/10.1016/j.hoc.2011.09.004

Houshmand M, Simonetti G, Circosta P, et al. Chronic myeloid leukemia stem cells. Leukemia. 2019;33:1543-1556. https://doi.org/10.1038/s41375-019-0490-0

Vetrie D, Helgason GV, Copland M. The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nat Rev Cancer. 2020;20(3):158-173. https://doi.org/10.1038/s41568-019-0230-9]

Xie X, Feng M, Wang Q, et al. Cellular and molecular state of myeloid leukemia stem cells. Adv Exp Med Biol. 2019;1143:41-57. https://doi.org/10.1007/978-981-13-7342-8_2

Hamilton A, Helgason GV, Schemionek M, Zhang B, Myssina S, Allan EK, et al. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood. 2012;2119:1501-1510. https://doi. org/10.1182/blood-2010-12-326843

Chomel JC, Turhan AG. Chronic myeloid leukemia stem cells in the era of targeted therapies: Resistance, persis- tence and long-term dormancy. Oncotarget. 2011;2:713-727. https://doi.org/10.18632/oncotarget.333

Mojtahedi H, Yazdanpanah N, Rezaiel N. Chronic myeloid leukemia stem cells: targeting therapeutic implications.

Stem Cell Res Ther. 2021;12:603. https://doi.org/10.1186/s13287-021-02659-1

Nelson DA. The biology of myelopoiesis. Clin Lab Med. 1990;10(4):649-659. PMID: 2272167

Porse BT, Bryder D, Theilgaard-Mönch K, et al. Loss of C/EBP alpha cell cycle control increases myeloid pro- genitor proliferation and transforms the neutrophil granulocyte lineage. J Exp Med. 2005;202(1):85-96. https://doi. org/10.1084/jem.20050067

Wagner K, Zhang Pu, Rosenbauer F, et al. Absence of the transcription factor CCAAT enhancer binding protein al- pha results in loss of myeloid identity in bcr/abl-induced malignancy. Proc Natl Acad Sci U S A. 2006;103(16):6338- 6343. https://doi.org/10.1073/pnas.0508143103

Tavor S, Park DJ, Gery S, et al. Restoration of C/EBP expression in a BCR-ABL+ cell line induces terminal granu- locytic differentiation. J Biol Chem. 2003;278(52):52651-52659. https://doi.org/10.1074/jbc.M307077200

Pulikkan JA, Tenen DG, Behre G. C/EBPderegulation as a paradigm for leukemogenesis. Leukemia. 2017;31(11): 2279-2285. https://doi.org/10.1038/leu.2017.229

Shvachko LP, Zavelevich MP, Gluzman DF, Telegeev GD. Vitamin E induces transcription factor C/EBP alpha and G-CSFR in K562 cells. Exp Oncol. 2018;40(4):328-331.

McKinstry WJ, Li CL, Rasko JE, et al. Cytokine receptor expression on hematopoietic stem and progenitor cells.

Blood. 1997;89(1):65-71. PMID: 8978278

Semerad GL, Liu F, Gregory AD, et al. G-CSF is an essential regulator of neutrophil trafficking from the bone mar- row to the blood. Immunity. 2002;17(4):413-423. https://doi.org/10.1016/s1074-7613(02)00424-7

Greenbaum AM, Link DC. Mechanisms of G-CSF-mediated hematopoietic stem and progenitor mobilization. Leu- kemia. 2011;25(2):211-217. https://doi.org/10.1038/leu.2010.248

Ji SQ, Chen HR, Wang HX, et al. Comparison of outcome of allogeneic bone marrow transplantation with and without granulocyte colony-stimulating factor (lenograstim) donor-marrow priming in patients with chronic myelogenous leukemia. Biol Blood Marrow Transplant. 2002;8(5):261-267. https://doi.org/10.1053/bbmt.2002.v8.pm12064363

Richards MK, Liu F, Iwasaki H, et al. Pivotal role of granulocyte colony-stimulating factor in the develop- ment of progenitors in the common myeloid pathway. Blood. 2003;102(10):3562-3568. https://doi.org/10.1182/ blood-2003-02-0593

Calvi LM, Adams GB, Weibrecht KW, et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 2003;425:841-846. https://doi.org/10.1038/nature02040

Taichman RS, Emerson SG. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med. 1994;179:1677-1682. https://doi.org/10.1084/jem.179.5.1677

Fulzele K, Krause DS, Panaroni C, et al. Myelopoiesis is regulated by osteocytes through Gs -dependent signaling.

Blood. 2013;121(6):930-939. https://doi.org/10.1182/blood-2012-06-437160

Nakamura T, Nakamura-Takashi A, Kasahara M, et al. Tissue-nonspecific alkaline phosphatase promotes the os- teogenic differentiation of osteoprogenitor cells. Biochem Biophys Res Commun. 2020;524(3):702-709. https://doi. org/10.1016/j.bbrc.2020.01.136

Udristioiu A, Iliescu RG, Cojocaru M, Joanta A. Alkaline phosphatase isoenzymes and leukocyte alkaline phospha- tase score in patients with acute and chronic disease: a brief review. J Adv Med Med Res. 2014;4(1):340-350. https:// doi.org/10.9734/BJMMR/2014/3309

Shvachko LP, Zavelevich MP, Gluzman DF, Telegeev GD. Aberrant expression of placental-like alkaline phospha- tase (PLAP) in chronic leukemia cells in vitro and its modulation by vitamin E. Exp Oncol. 2020;42(1):1-4. https:// doi.org/10.32471/exp-oncology.2312-8852.vol-42-no-1.14285

Fishman WH. Clinical and biological signifi ance of an isoenzyme tumor marker-PLAP. Clin Biochem. 1987;20:387-392.

Su Y, Zhang X, Bidlingmaier S, et al. ALPPL2 is a highly specific and targetable tumor cell surface antigen. Cancer Res. 2020;80(20):4552-4564. https://doi.org/10.1158/0008-5472.CAN-20-1418

Pećina-Slaus N. Tumor suppressor gene E-cadherin and its role in normal and malignant cells. Cancer Cell Int. 2003;3:17. https://doi.org/10.1186/1475-2867-3-17.

Zhou ZL, Ma J, Tong MH, et al. Nanomechanical measurement of adhesion and migration of leukemia cells with phorbol 12-myristate 13-acetate treatment. Int J Nanomedicine. 2016;11:6533-6545. https://doi.org/10.2147/IJN. S118065

Acs G, LiVolsi VA. Loss of membrane expression of E-cadherin in leukemic erythroblasts. Arch Pathol Lab Med. 2001;125(2):198-201. https://doi.org/10.5858/2001-125-0198-LOMEOE

Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20:69-84. https://doi.org/10.1038/s41580-018-0080-4

Cano A, Pérez-Moreno MA, Rodrigo I, et al. The transcription factor SNAIL controls epithelial-mesenchymal transition by repressing E-cadherin expression. Nat Cell Biol. 2000;2(2):76-83. https://doi.org/10.1038/35000025

Chen SC, Liao TT, Yang MH. Emerging roles of epithelial-mesenchymal transition in hematological malignancies.

J Biomed Sci. 2018;25:37. https://doi.org/10.1186/s12929-018-0440-6

Carmichael CL, Wang J, Nguyen T, et al. (2020). The EMT modulator SNAI1 contributes to AML pathogenesis via its interaction with LSD1. Blood. 2020;136(8):957-973. https://doi.org/10.1182/blood.2019002548

Dong CY, Liu XY, Wang N, et al. Twist-1, a novel regulator of hematopoietic stem cell self-renewal and myeloid lineage development. Stem Cells. 2014;32(12):3173-3182. https://doi.org/10.1002/stem.1803

Downloads

Published

07.10.2025

How to Cite

Shvachko, L., Zavelevich, M., Dybkov, M., Gartovska, I., & Telegeev, G. (2025). ALPHA-TOCOPHEROL AND G-CSF CHANGE EXPRESSION OF GENES ASSOCIATED WITH DIFFERENTIATION OF K562 CHRONIC MYELOID LEUKEMIA CELLS DOWNREGULATING EMT-ASSOCIATED STEMNESS BIOMARKERS. Experimental Oncology, 47(2), 181–187. https://doi.org/10.15407/exp-oncology.2025.02.181

Issue

Section

Original contributions