IDENTIFICATION AND FUNCTIONAL CHARACTERIZATION OF MICRORNAS REGULATING HTERT
DOI:
https://doi.org/10.15407/exp-oncology.2025.02.167Keywords:
microRNA, hTERT, cancer, hsa-miR-6796-5p, hsa-miR-4651, binding orientation, affinity, cell proliferationAbstract
Background. Telomerase is a ribonucleoprotein (RNP) reverse transcriptase that replicates the ends of chromosomes, thereby maintaining genome integrity, and its inhibition may be envisioned to prevent carcinogenesis or treat cancer patients. Various approaches have been used to target hTERT, and one of the promising strategies is the use of hTERT-targeting microRNAs (miRNAs). Aim. To investigate the interaction of miRNAs with hTERT, describing the strength, affinity, preferred binding orientation, and in vitro verification of miRNA on hTERT expression in cancer. Materials and Methods. The miRWalk, TargetScan, and miRDB databases were used for screening. Consistently, five top-hit miRNAs were found in all three databases that could interact with hTERT mRNA, namely, hsa-miR-4651, hsa-miR-608, hsa-miR-6796-5p, hsa-miR-6752-5p, and hsa-miR-6791-5p. We applied stringent in silico tools to firstly model the structures of lead miRNA and hTERT mRNA. Then docking was performed, and finally stability of miRNA-mRNA complexes was analyzed using MD simulations. Results. The expression of the selected miRNAs was inhibited in the MCF-7 breast cancer cell line. The inhibition of hsa-miR-6796-5p was enhanced, while hsa-miR-4651 significantly reduced the expression of hTERT protein. Moreover, the inhibition of hsa-miR-4651 expression led to a reduction in melanoma and breast cancer cell proliferation. Conclusion. The current study provided a detailed procedure for identifying and verifying miRNAs against mRNAs, as well as highlighting the differential regulation of hTERT by specific miRNAs. It demonstrated that miRNA inhibition can modulate hTERT expression and cell proliferation, with potential implications for targeted cancer therapies. The strategy used in this study could also be applied to other genes for screening potential miRNAs.
References
Gillis AJ, Schuller AP, Skordalakes E. Structure of the Tribolium castaneum telomerase catalytic subunit TERT.
Nature. 2008;455(7213):633-637. https://doi.org/10.1038/nature07283
Mitchell M, Gillis A, Futahashi M, et al. Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA. Nat Struct Mol Biol. 2010;17(4):513-518. https://doi.org/10.1038/nsmb.1777
Cong YS, Wen J, Bacchetti S. The human telomerase catalytic subunit hTERT: organization of the gene and charac- terization of the promoter. Hum Mol Genet. 1999;8(1):137-142. https://doi.org/10.1093/hmg/8.1.137
MacNeil DE, Bensoussan HJ, Autexier C. Telomerase regulation from beginning to the end. Genes (Basel). 2016;7(9). https://doi.org/10.3390/genes7090064
Venteicher AS, Meng Z, Mason PJ, et al. Identification of ATPases pontin and reptin as telomerase components es- sential for holoenzyme assembly. Cell. 2008;132(6):945-957. https://doi.org/10.1016/j.cell.2008.01.019
Bryan TM, Reddel RR. Telomere dynamics and telomerase activity in in vitro immortalised human cells. Eur J Cancer. 1997;33(5):767-773. https://doi.org/10.1016/s0959-8049(97)00065-8
Lilleby W, Gaudernack G, Brunsvig PF, et al. Phase I/IIa clinical trial of a novel hTERT peptide vaccine in men with metastatic hormone-naive prostate cancer. Cancer Immunol Immunother. 2017;66(7):891-901. https://doi. org/10.1007/s00262-017-1994-y
Zanetti M. A second chance for telomerase reverse transcriptase in anticancer immunotherapy. Nat Rev Clin Oncol. 2017;14(2):115-128. https://doi.org/10.1038/nrclinonc.2016.67
Thompson PA, Drissi R, Muscal JA, et al. A phase I trial of imetelstat in children with refractory or recurrent solid tumors: a Children’s Oncology Group Phase I Consortium Study (ADVL1112). Clin Cancer Res. 2013;19(23):6578- 6584. https://doi.org/10.1158/1078-0432.Ccr-13-1117
Bryan C, Rice C, Hoffman H, et al. Structural basis of telomerase inhibition by the highly specific BIBR1532. Struc- ture. 2015;23(10):1934-1942. https://doi.org/10.1016/j.str.2015.08.006
Biffi G, Tannahill D, McCafferty J, et al. Quantitative visualization of DNA G-quadruplex structures in human cells.
Nat Chem. 2013;5(3):182-186. https://doi.org/10.1038/nchem.1548
Drosopoulos WC, Kosiyatrakul ST, Schildkraut CL. BLM helicase facilitates telomere replication during leading strand synthesis of telomeres. J Cell Biol. 2015;210(2):191-208. https://doi.org/10.1083/jcb.201410061
Tauchi T, Shin-ya K, Sashida G, et al. Telomerase inhibition with a novel G-quadruplex-interactive agent, telomestatin: in vitro and in vivo studies in acute leukemia. Oncogene. 2006;25(42):5719-5725. https://doi.org/10.1038/sj.onc.1209577
Liu W, Zhong YF, Liu LY, et al. Solution structures of multiple G-quadruplex complexes induced by a platinum(II)- based tripod reveal dynamic binding. Nat Commun. 2018;9(1):3496. https://doi.org/10.1038/s41467-018-05810-4
El-Daly H, Kull M, Zimmermann S, et al. Selective cytotoxicity and telomere damage in leukemia cells using the telomerase inhibitor BIBR1532. Blood. 2005;105(4):1742-1749. https://doi.org/10.1182/blood-2003-12-4322
Budakoti M, Panwar AS, Molpa D, et al. MicroRNA: The darkhorse of cancer. Cell Signal. 2021;83:109995. https:// doi.org/10.1016/j.cellsig.2021.109995
Smolarz B, Durczyński A, Romanowicz H, etal. miRNAsincancer(reviewofliterature). Int JMol Sci. 2022;23(5):2805. https://doi.org/10.3390/ijms23052805
Hussen BM, Hidayat HJ, Salihi A, et al. MicroRNA: A signature for cancer progression. Biomed Pharmacother. 2021;138:111528. https://doi.org/10.1016/j.biopha.2021.111528
Peng Y, Croce CM. The role of microRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004. https:// doi.org/10.1038/sigtrans.2015.4
Yi M, Xu L, Jiao Y, et al. The role of cancer-derived microRNAs in cancer immune escape. J Hematol Oncol. 2020;13(1):25. https://doi.org/10.1186/s13045-020-00848-8
Otmani K, Rouas R, Lewalle P. OncomiRs as noncoding RNAs having functions in cancer: Their role in immune suppression and clinical implications. Front Immunol. 2022;13:913951. https://doi.org/10.3389/fimmu.2022.913951
Hrdličková R, Nehyba J, Bargmann W, et al. Multiple tumor suppressor microRNAs regulate telomerase and TCF7, an important transcriptional regulator of the Wnt pathway. PLoS One. 2014;9(2):e86990. https://doi.org/10.1371/ journal.pone.0086990
Cho WC. OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer. 2007;6:60. https://doi. org/10.1186/1476-4598-6-60
Bai L, Wang H, Wang AH, et al. MicroRNA-532 and microRNA-3064 inhibit cell proliferation and invasion by acting as direct regulators of human telomerase reverse transcriptase in ovarian cancer. PLoS One. 2017;12(3):e0173912. https://doi.org/10.1371/journal.pone.0173912
Li J, Lei H, Xu Y, et al. miR-512-5p suppresses tumor growth by targeting hTERT in telomerase positive head and neck squamous cell carcinoma in vitro and in vivo. PLoS One. 2015;10(8):e0135265. https://doi. org/10.1371/journal.pone.0135265
Zhou J, Dai W, Song J. miR-1182 inhibits growth and mediates the chemosensitivity of bladder cancer by targeting hTERT. Biochem Biophys Res Commun. 2016;470(2):445-452. https://doi.org/10.1016/j.bbrc.2016.01.014
Chen L, Lü MH, Zhang D, et al. miR-1207-5p and miR-1266 suppress gastric cancer growth and invasion by target- ing telomerase reverse transcriptase. Cell Death Dis. 2014;5(1):e1034. https://doi.org/10.1038/cddis.2013.553
Mitomo S, Maesawa C, Ogasawara S, et al. Downregulation of miR-138 is associated with overexpression of hu- man telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci. 2008;99(2):280-286. https://doi.org/10.1111/j.1349-7006.2007.00666.x
Cittelly DM, Das PM, Spoelstra NS, et al. Downregulation of miR-342 is associated with tamoxifen resistant breast tumors. Mol Cancer. 2010;9:317. https://doi.org/10.1186/1476-4598-9-317
Lewis KA, Tollefsbol TO. Regulation of the telomerase reverse transcriptase subunit through epigenetic mecha- nisms. Front Genet. 2016;7:83. https://doi.org/10.3389/fgene.2016.00083
Liu K, Li L, Rusidanmu A, et al. Down-regulation of miR-1294 is related to dismal prognosis of patients with esophageal squamous cell carcinoma through elevating c-myc expression. Cell Physiol Biochem. 2015;36(1):100- 110. https://doi.org/10.1159/000374056
Östling P, Leivonen SK, Aakula A, et al. Systematic analysis of microRNAs targeting the androgen receptor in pros- tate cancer cells. Cancer Res. 2011;71(5):1956-1967. https://doi.org/10.1158/0008-5472.Can-10-2421
Xu X, Chen W, Miao R, et al. miR-34a induces cellular senescence via modulation of telomerase activity in hu- man hepatocellular carcinoma by targeting FoxM1/c-Myc pathway. Oncotarget. 2015;6(6):3988-4004. https://doi. org/10.18632/oncotarget.2905
Sticht C, De La Torre C, Parveen A, et al. miRWalk: An online resource for prediction of microRNA binding sites. PLoS One. 2018;13(10):e0206239. https://doi.org/10.1371/journal.pone.0206239
Agarwal V, Bell GW, Nam J-W, et al. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4:e05005. https://doi.org/10.7554/eLife.05005
McGeary SE, Lin KS, Shi CY, et al. The biochemical basis of microRNA targeting efficacy. Science. 2019;366(6472). https://doi.org/10.1126/science.aav1741
Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127-D131. https://doi.org/10.1093/nar/gkz757
Li D, Knox B, Gong B, et al. Identifi ation of translational microRNA biomarker candidates for ketoconazole-induced liver injury using next-generation sequencing. Toxicol Sci. 2021;179(1):31-43. https://doi.org/10.1093/toxsci/kfaa162
Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell. 2006;126(6):1203-1217. https://doi.org/10.1016/j.cell.2006.07.031
Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006;126(6):1203-1217. https://doi.org/10.1016/j.cell.2006.07.031
Hassan M, Iqbal MS, Naqvi S, et al. Prediction of site directed miRNAs as key players of Transcriptional regulators against influenza C virus infection through computational approaches. Front Mol Biosci. 2022;9:866072. https://doi. org/10.3389/fmolb.2022.866072
Sayers EW, Bolton EE, Brister JR, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2022;50(D1):D20-D26. https://doi.org/10.1093/nar/gkab1112
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155-D162. https://doi.org/10.1093/nar/gky1141
Sarzynska J, Popenda M, Antczak M, et al. RNA tertiary structure prediction using RNAComposer in CASP15.
Proteins. 2023;91(12):1790-1799. https://doi.org/10.1002/prot.26578
Antczak M, Popenda M, Zok T, et al. New functionality of RNAComposer: an application to shape the axis of miR160 precursor structure. Acta Biochim Pol. 2016;63(4):737-744. https://doi.org/10.18388/abp.2016_1329
Parisien M, Major F. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data. Nature. 2008;452(7183):51-55. https://doi.org/10.1038/nature06684
Yao J, Reinharz V, Major F, et al. RNA-MoIP: prediction of RNA secondary structure and local 3D motifs from sequence data. Nucleic Acids Res. 2017;45(W1):W440-W444. https://doi.org/10.1093/nar/gkx429
Yan Y, Tao H, He J, et al. The HDOCK server for integrated protein-protein docking. Nat Protoc. 2020;15(5):1829- 1852. https://doi.org/10.1038/s41596-020-0312-x
Cheatham TE, 3rd. Simulation and modeling of nucleic acid structure, dynamics and interactions. Curr Opin Struct Biol. 2004;14(3):360-367. https://doi.org/10.1016/j.sbi.2004.05.001
Mackerell AD, Jr., Nilsson L. Molecular dynamics simulations of nucleic acid-protein complexes. Curr Opin Struct Biol. 2008;18(2):194-199. https://doi.org/10.1016/j.sbi.2007.12.012
Shah K, Ansari M, Saeed S, et al. Nilotinib: disrupting the MYC-MAX heterocomplex. Bioinform Biol Insights. 2024;18:11779322241267056. https://doi.org/10.1177/11779322241267056
Kavakiotis I, Alexiou A, Tastsoglou S, et al. DIANA-miTED: a microRNA tissue expression database. Nucleic Acids Research. 2021;50(D1):D1055-D1061. https://doi.org/10.1093/nar/gkab733
Daniel M, Peek GW, Tollefsbol TO. Regulation of the human catalytic subunit of telomerase (hTERT). Gene. 2012;498(2):135-146. https://doi.org/10.1016/j.gene.2012.01.095
Gaspar TB, Sá A, Lopes JM, et al. Telomere maintenance mechanisms in cancer. Genes (Basel). 2018;9(5):241. https://doi.org/10.3390/genes9050241
Dratwa M, Wysoczańska B, Łacina P, et al. TERT-regulation and roles in cancer formation. Front Immunol. 2020;11:589929. https://doi.org/10.3389/fimmu.2020.589929
Schrank Z, Khan N, Osude C, et al. Oligonucleotides targeting telomeres and telomerase in cancer. Molecules. 2018;23(9):2267. https://doi.org/10.3390/molecules23092267
Zhang Y, Schiff D, Park D, et al. MicroRNA-608 and microRNA-34a regulate chordoma malignancy by targeting EGFR, Bcl-xL and MET. PLoS One. 2014;9(3):e91546. https://doi.org/10.1371/journal.pone.0091546
Chai L, Kang XJ, Sun ZZ, et al. MiR-497-5p, miR-195-5p and miR-455-3p function as tumor suppressors by target- ing hTERT in melanoma A375 cells. Cancer Manag Res. 2018;10:989-1003. https://doi.org/10.2147/cmar.S163335
Cukusić A, Skrobot Vidacek N, Sopta M, et al. Telomerase regulation at the crossroads of cell fate. Cytogenet Ge- nome Res. 2008;122(3-4):263-272. https://doi.org/10.1159/000167812
Guzman H, Sanders K, Idica A, et al. miR-128 inhibits telomerase activity by targeting TERT mRNA. Oncotarget. 2018;9(17):13244-13253. https://doi.org/10.18632/oncotarget.24284
Leão R, Apolónio JD, Lee D, et al. Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer. J Biomed Sci. 2018;25(1):22. https://doi.org/10.1186/s12929-018-0422-8
Prajapati KS, Shuaib M, Kushwaha PP, et al. Identifi ation of cancer stemness related miRNA(s) using integrated bioinfor- matics analysis and in vitro validation. 3 Biotech. 2021;11(10):446.https://doi.org/10.1007/s13205-021-02994-3
Liu BW, Sun N, Lin H, et al. The p53/ZEB1-PLD3 feedback loop regulates cell proliferation in breast cancer. Cell Death Dis. 2023;14(11):751. https://doi.org/10.1038/s41419-023-06271-4
Rovira-Llopis S, Díaz-Rúa R, Grau-Del Valle C, et al. Characterization of differentially expressed circulating miR- NAs in metabolically healthy versus unhealthy obesity. Biomedicines. 2021;9(3):321. https://doi.org/10.3390/bio- medicines9030321
Wang XB, Tian XY, Li Y, et al. Elevated expression of macrophage migration inhibitory factor correlates with tumor recurrence and poor prognosis of patients with gliomas. J Neurooncol. 2012;106(1):43-51. https://doi.org/10.1007/ s11060-011-0640-3
Zuo W, Zhou K, Deng M, et al. LINC00963 facilitates acute myeloid leukemia development by modulating miR- 608/MMP-15. Aging (Albany NY). 2020;12(19):18970-18981. https://doi.org/10.18632/aging.103252
Yang H, Li Q, Niu J, et al. microRNA-342-5p and miR-608 inhibit colon cancer tumorigenesis by targeting NAA10.
Oncotarget. 2016;7(3):2709-2720. https://doi.org/10.18632/oncotarget.6458
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Experimental Oncology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.