INTERPLAY OF LNCRNAS, METABOLIC CELL DEATH, AND IMMUNE MICROENVIRONMENT IN GENITOURINARY MALIGNANCIES

Authors

  • V. Gordiiuk Institute of Molecular Biology and Genetics, the NAS of Ukraine, Kyiv, Ukraine
  • L. Shevchenko Institute of Molecular Biology and Genetics, the NAS of Ukraine, Kyiv, Ukraine
  • D. Todoryshyn Taras Shevchenko National University of Kyiv, Educational and Scientific Center “Institute of Biology and Medicine”, Kyiv, Ukraine
  • V. Kashuba Institute of Molecular Biology and Genetics, the NAS of Ukraine, Kyiv, Ukraine
  • O. Mankovska Institute of Molecular Biology and Genetics, the NAS of Ukraine, Kyiv, Ukraine

DOI:

https://doi.org/10.15407/exp-oncology.2025.02.143

Keywords:

cuproptosis, ferroptosis, disulfidptosis, lncRNAs, prostate cancer, bladder cancers, renal cancer, immune microenvironment

Abstract

Genitourinary cancers, including prostate, bladder, and renal cancers, represent a significant global health burden due to their high prevalence and resistance to conventional therapies. A critical aspect of cancer progression is metabolic reprogramming, which not only fuels uncontrolled growth but also profoundly influences programmed cell death pathways and the tumor immune microenvironment. This review synthesizes current research on the intricate roles of long non-coding RNAs (lncRNAs) in modulating three emerging forms of regulated cell death — cuproptosis, ferroptosis, and disulfidptosis — within the context of genitourinary malignancies. We discuss how specific lncRNA signatures are implicated in the regulation of these metabolic cell death pathways, affecting cancer cell proliferation, migration, and invasion. Furthermore, we explore the compelling association between these lncRNA expression patterns and the characteristics of the tumor immune microenvironment, highlighting their potential as prognostic biomarkers and indicators for stratifying patient responses to immunotherapy. The evidence presented underscores the multifaceted functions of lncRNAs in cancer metabolism and immunity, positioning them as promising therapeutic targets and informative biomarkers for precision oncology in genitourinary cancers.

References

Sekhoacha M, Riet, K, Motloung P, et al. Prostate cancer review: genetics, diagnosis, treatment options, and alterna- tive approaches. Molecules, Basel. 2022;27(17):5730. https://doi.org/10.3390/molecules27175730

Lopez-Beltran A, Cookson MS, Guercio BJ, et al. Advances in diagnosis and treatment of bladder cancer. BMJ. 2024;384:e076743. https://doi.org/10.1136/bmj-2023-076743

Bianchi N, Ancona P, Aguiari G. Molecular mechanisms of drug resistance in clear cell renal cell carcinoma. Can- cers, Basel. 2025;17(10):1613. https://doi.org/10.3390/cancers17101613

Nong S, Han X, Xiang Y, et al. Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm. 2023;4:e218. https://doi.org/10.1002/mco2.218

Gao T, Yang L, Zhang Y, et al. Cancer metabolic reprogramming and precision medicine-current perspective. Front Pharmacol. 2024;15:1450441. https://doi.org/10.3389/fphar.2024.1450441

Iessi E, Vona R, Cittadini C, et al. Targeting the interplay between cancer metabolic reprogramming and cell death pathways as a viable therapeutic path. Biomedicines. 2021;9(12):1942. https://doi.org/10.3390/biomedicines9121942

Yang S, Hu C, Chen X, et al. Crosstalk between metabolism and cell death in tumorigenesis. Mol Cancer. 2024;23,71. https://doi.org/10.1186/s12943-024-01977-1

Mao C, Min W, Li Z, et al, Metabolic cell death in cancer: ferroptosis, cuproptosis, disulfidptosis, and beyond. Pro- tein Cell. 2024;15:642-660. https://doi.org/10.1093/procel/pwae003

Aden D, Sureka N, Zaheer S, et al. Metabolic reprogramming in cancer: implications for immunosuppressive microenvironment. Immunology. 2025;174:30-72. https://doi.org/10.1111/imm.13871

Wu L, Jin Y, Zhao X, et al. Tumor aerobic glycolysis confers immune evasion through modulating sensitivity to T cell-me- diated bystander killing via TNF-. Cell Metab. 2023;35(9):1580-1596.e9. https://doi.org/10.1016/j.cmet.2023.07.001

Liu F, Tang L, Liu H, et al. Cancer-associated fibroblasts secrete FGF5 to inhibit ferroptosis to decrease cisplatin sensitivity in nasopharyngeal carcinoma through binding to FGFR2. Cell Death Dis. 2024;15(4):279. https://doi. org/10.1038/s41419-024-06671-0

Li Y, Liu J, Chen Y, et al. Nanoparticles synergize ferroptosis and cuproptosis to potentiate cancer immunotherapy.

Adv Sci, Weinh. 2024;11(23):e2310309. https://doi.org/10.1002/advs.202310309

Stockwell BR, Jiang X. A Physiological function for ferroptosis in tumor suppression by the immune system. Cell Metab. 2019;30(1):14-15. https://doi.org/10.1016/j.cmet.2019.06.012

Flippot R, Beinse G, Boilève A, et al. Long non-coding RNAs in genitourinary malignancies: a whole new world.

Nat Rev Urol. 2019;16(8):484-504. https://doi.org/10.1038/s41585-019-0195-1

Mattick JS, Amaral PP, Carninci P, et al. Long non-coding RNAs: definitions, functions, challenges and recommen- dations. Nat Rev Mol Cell Biol. 2023;24:430-447. https://doi.org/10.1038/s41580-022-00566-8

Lemos AEG, Matos ADR, Ferreira LB, et al. The long non-coding RNA PCA3: an update of its functions and clini- cal applications as a biomarker in prostate cancer. Oncotarget. 2019; 10(61): 6589-6603. https://www.ncbi.nlm.nih. gov/pmc/articles/PMC6859920/

Haviaz VO, Bratyshchenko AS, Skrypnikova OS, et al. Non-invasive biomarkers for bladder cancer: a study on lncRNAs and DNA methylation. Biopolym Cell. 2025;41(1):52-62. http://dx.doi.org/10.7124/bc.000B0E

Zhang A, Zhao JC, Kim J, et al. LncRNA HOTAIR enhances the androgen-receptor-mediated transcriptional program and drives castration-resistant prostate cancer. Cell Rep. 2015;13(1):209-221. https://doi.org/10.1016/ j.celrep.2015.08.069

Gerashchenko GV, Mankovska OS, Dmitriev AA, et al. Expression of epithelial-mesenchymal transitionrelated genes in prostate tumours. Biopolym Cell. 2017;33(5):335-355. http://dx.doi.org/10.7124/bc.00095E

Qin X, Zhong J, Wang L, et al. LncRNA LNC-565686 promotes proliferation of prostate cancer by inhibiting apoptosis through stabilizing SND1. Biomedicines. 2023;11(10):2627. https://doi.org/10.3390/biomedicines 11102627

Pickard MR, Mourtada-Maarabouni M, Williams GT. Long non-coding RNA GAS5 regulates apoptosis in prostate cancer cell lines. Biochim Biophys Acta. 2013;1832(10):1613-1623. https://doi.org/10.1016/j.bbadis. 2013.05.005

Hu R, Lu Z. Long non-coding RNA HCP5 promotes prostate cancer cell proliferation by acting as the sponge of miR-4656 to modulate CEMIP expression. Oncol Rep 2020;43:328-336. https://doi.org/10.3892/or.2019.7404

Zhong X, Long Z, Wu S, et al. LncRNA-SNHG7 regulates proliferation, apoptosis and invasion of bladder cancer cells assurance guidelines. J BUON. 2018;23(3):776-781

He A, Liu Y, Chen Z, et al. Over-expression of long noncoding RNA BANCR inhibits malignant phenotypes of hu- man bladder cancer. J Exp Clin Cancer Res. 2016;35:125. https://doi.org/10.1186/s13046-016-0397-9

Zhan Y, Li Y, Guan B, et al. Long non-coding RNA HNF1A-AS1 promotes proliferation and suppresses apoptosis of bladder cancer cells through upregulating Bcl-2. Oncotarget. 2017;8(44):76656-76665. https://doi.org/10.18632/ oncotarget.20795

Xiao ZD, Han L, Lee H, et al. Energy stress-induced lncRNA FILNC1 represses c-Myc-mediated energy me- tabolism and inhibits renal tumor development. Nat Commun. 2017;8:783. https://doi.org/10.1038/s41467-017- 00902-z

Yu J, Tang R, Li J. Identification of pyroptosis-related lncRNA signature and AC005253.1 as a pyroptosis-related oncogene in prostate cancer. Front Oncol. 2022;12:991165. https://doi.org/10.3389/fonc.2022.991165

Wang P, Wang Z, Zhu L, et al. A pyroptosis-related lncRNA signature in bladder cancer. Cancer Med. 2023;12(5):6348- 6364. https://doi.org/10.1002/cam4.5344

Zhong M, Wang X, Zhu E, et al. Analysis of pyroptosis-related immune signatures and identification of pyroptosis- related LncRNA prognostic signature in clear cell renal cell carcinoma. Front Genet. 2022;13:905051. https://doi. org/10.3389/fgene.2022.905051

Sun YF, Chen L, Xia QJ, et al. Identification of necroptosis-related long non-coding RNAs prognostic signature and the crucial lncRNA in bladder cancer. J Cancer Res Clin Oncol. 2023;149:10217-10234. https://doi.org/10.1007/ s00432-023-04886-w

Gu J, He Z, Huang Y, et al. Clinicopathological and prognostic value of necroptosis-associated lncRNA model in patients with kidney renal clear cell carcinoma. Dis Markers. 2022;2022:5204831. https://doi.org/10.1155/ 2022/5204831

Cong Y, Li N, Zhang Z, et al. Cuproptosis: molecular mechanisms, cancer prognosis, and therapeutic applications.

J Transl Med. 2025;23(1):104. https://doi.org/10.1186/s12967-025-06121-1

Nahla E. El-Ashmawy, Eman G, et al. Cuproptosis regulation by long noncoding RNAs: Mechanistic insights and clinical implications in cancer. Arch Biochem Biophys. 2025;765:110324. https://doi.org/10.1016/j.abb. 2025.110324.

Zhou G, Chen C, Wu H, et al. LncRNA AP000842.3 triggers the malignant progression of prostate cancer by regulating cuproptosis related gene NFAT5. Technol Cancer Res Treat. 2024;23:15330338241255585. https://doi. org/10.1177/15330338241255585

Liu H. Pan-cancerprofilesofthecuproptosisgeneset. Am JCancer Res. 2022;12(8):4074-4081. PMCID: PMC9442004

Lu Y, Wu J, Li X, et al. Cuproptosis-related lncRNAs emerge as a novel signature for predicting prognosis in pros- tate carcinoma and functional experimental validation. Front Immunol. 2024;15:1471198. https://doi.org/10.3389/ fimmu.2024.1471198

Shen J, Du M, Liang S, et al. Construction of a cuproptosis-associated lncRNA prognostic signature for blad- der cancer and experimental validation of cuproptosis-related lncRNA UBE2Q1-AS1. Front Med, Lausanne. 2023;10:1222543. https://doi.org/10.3389/fmed.2023.1222543

Duan H, Shen Y, Wang C, et al. Cuproptosis-related lncRNAs modulate the prognosis of MIBC by regulating the expression pattern of immunosuppressive molecules within the tumor microenvironment. Int J Gen Med. 2024;17:161-174. https://doi.org/10.2147/IJGM.S438501

Hong P. Huang W, Du H, et al. Prognostic value and immunological characteristics of a novel cuproptosis-related long noncoding RNAs risk signature in kidney renal clear cell carcinoma. Front Genet. 2022;13:1009555. https:// doi.org/10.3389/fgene.2022.1009555

Katifelis H, Grammatikaki S, Zakopoulou R, et al. Up-regulation of cuproptosis-related lncRNAS in patients receiving immunotherapy for metastatic clear cell renal cell carcinoma indicates progressive disease. In Vivo. 2025;39(1):146-151. https://doi.org/10.21873/invivo.13812

Xie T, Liu B, Liu D, et al. Cuproptosis-related lncRNA signatures predict prognosis and immune relevance of kidney renal papillary cell carcinoma. Front Pharmacol. 2022;13:1103986. https://doi.org/10.3389/fphar.2022. 1103986

Zhang W, Wang H, Wang W, et al. A cuproptosis-related lncRNAs signature could accurately predict prognosis in pa- tients with clear cell renal cell carcinoma. Anal Cell Pathol, Amst. 2022;2022:4673514. https://doi.org/10.1155/2022/ 4673514

Huang Z, Liu B, Li X, et al. FOXD2-AS1 Binding to MYC activates EGLN3 to affect the malignant progression of clear cell renal cell carcinoma. J Biochem Mol Toxicol. 2024;38(12):e70083. https://doi.org/10.1002/jbt.70083

Liu C, Gao Y, Ni J, et al. The ferroptosis-related long non-coding RNAs signature predicts biochemical recurrence and immune cell infiltration in prostate cancer. BMC Cancer. 2022;22(1):788. https://doi.org/10.1186/s12885-022- 09876-8

Zhou P, Gu Y, Zhao W, et al. Ferroptosis-related LncRNA BCRP3 promotes the proliferation and migration of pros- tate cancer. Eur J Cancer Care. 2024:3569968. https://doi.org/10.1155/2024/3569968

Zhang Y, Guo S, Wang S, et al. LncRNA OIP5-AS1 inhibits ferroptosis in prostate cancer with long-term cad- mium exposure through miR-128-3p/SLC7A11 signaling. Ecotoxicol Environ Saf. 2021;220:112376. https://doi. org/10.1016/j.ecoenv.2021.112376

Jiang X, Guo S, Xu M, et al. TFAP2C-mediated lncRNA PCAT1 inhibits ferroptosis in docetaxel-resistant pros- tate cancer through c-Myc/miR-25-3p/SLC7A11 signaling. Front Oncol. 2022;12:862015. https://doi.org/10.3389/ fonc.2022.862015

Chen M, Nie Z, Li Y, et al. A new ferroptosis-related lncRNA signature predicts the prognosis of bladder cancer patients. Front Cell Dev Biol. 2021;9:699804. https://doi.org/10.3389/fcell.2021.699804

Zhou J, Zhang L, Wu H, et al. Ferroptosis-related lncRNA AL136084.3 is associated with NUPR1 in bladder cancer.

Discov Oncol. 2024;15(1):730. doi:10.1007/s12672-024-01564-2

Liu J, Song X, Kuang F, et al. NUPR1 is a critical repressor of ferroptosis. Nat Commun. 2021;12:647. https://doi. org/10.1038/s41467-021-20904-2

Luo W, Wang J, Xu W, et al. LncRNA RP11-89 facilitates tumorigenesis and ferroptosis resistance through PROM2- activated iron export by sponging miR-129-5p in bladder cancer. Cell Death Dis. 2021;12:1043. https://doi. org/10.1038/s41419-021-04296-1

Shu X., Zhang Z, Yao Z-Y, et al. Identification of five ferroptosis-related LncRNAs as novel prognosis and diagnosis signatures for renal cancer. Front Mol Biosci. 2021;8:763697. https://doi.org/10.3389/fmolb.2021.763697

Wei S-Y, Feng B, Bi M, et al., Construction of a ferroptosis-related signature based on seven lncRNAs for prognosis and immune landscape in clear cell renal cell carcinoma. BMC Med Genomics. 2022;15:263. https://doi.org/10.1186/ s12920-022-01418-2

Lv D, Xiang Y, Yang Q, et al. Long non-coding RNA TUG1 promotes cell proliferation and inhibits cell apoptosis, autophagy in clear cell renal cell carcinoma via MiR-31-5p/FLOT1 axis. Onco Targets Ther. 2020;13:5857-5868. https://doi.org/10.2147/OTT.S254634

Zheng P, Zhou C, Ding Y, et al. Disulfidptosis: a new target for metabolic cancer therapy. J Exp Clin Cancer Res. 2023;42(1):103. https://doi.org/10.1186/s13046-023-02675-4

Mulati Y, Lai C, Luo J, et al. Establishment of a prognostic risk prediction model incorporating disulfidptosis- related lncRNA for patients with prostate cancer. BMC Cancer. 2024;24(1):44. https://doi.org/10.1186/s12885-023- 11778-2

Feng K, Zhou S, Sheng Y, et al. Disulfidptosis-related LncRNA signatures for prognostic prediction in kidney renal clear cell carcinoma. Clin Genitourin. Cancer. 2024;22(4):102095. https://doi.org/10.1016/j.clgc.2024.102095.

Leng X, Chen H, Chen G. Construction and validation of a reliable disulfidptosis-related lncRNAs signature of the subtype, prognostic, and immune landscape in bladder cancer. Discov Onc. 2025;16:418. https://doi.org/10.1007/ s12672-025-02174-2

Chen R, Wu J, Che Y, et al. Machine learning-driven prognostic analysis of cuproptosis and disulfidptosis-related lncRNAs in clear cell renal cell carcinoma: a step towards precision oncology. Eur J Med Res. 2024;29:176. https:// doi.org/10.1186/s40001-024-01763-1

Cheng X, Zeng Z, Yang H, et al. Novel cuproptosis-related long non-coding RNA signature to predict prognosis in prostate carcinoma. BMC Cancer. 2023;23:105. https://doi.org/10.1186/s12885-023-10584-0

Liu J, Cui J, Zhao S, Wu, et al. Ferroptosis-related long noncoding RNAs have excellent predictive ability for multiomic characteristics of bladder cancer. Oxidat Med Cell Longev. 2022:9316847. https://doi.org/10.1155/2022/9316847

Li D, Wu X, Song W, et al. Clinical significance and immune landscape of cuproptosis-related lncRNAs in kidney renal clear cell carcinoma: a bioinformatical analysis. Ann Transl Med. 2022;10(22):1235. https://doi.org/10.21037/ atm-22-5204

Zhang L, Di L, Liu J, et al. The LncRNA signature associated with cuproptosis as a novel biomarker of prognosis in immunotherapy and drug screening for clear cell renal cell carcinoma. Front Genet. 2023;14:1039813. https://doi. org/10.3389/fgene.2023.1039813

Liu L, Wang Q, Qiu Z, et al. Noncoding RNAs: the shot callers in tumor immune escape. Sig Transduct Target Ther. 2020;5:102. https://doi.org/10.1038/s41392-020-0194-y

Wang J, Shen C, Dong D, et al. Identification and verification of an immune-related lncRNA signature for predict- ing the prognosis of patients with bladder cancer. Int Immunopharmacol. 2021;90:107146. https://doi.org/10.1016/j. intimp.2020.107146

Li FW, Luo SK. Identification and construction of a predictive immune-related lncRNA signature model for mela- noma. Int J Gen Med. 2021;14:9227-9235. https://doi.org/10.2147/IJGM.S340025

Zhou N, Chen Y, Yang L, et al. LncRNA SNHG4 promotes malignant biological behaviors and immune escape of colorectal cancer cells by regulating the miR-144-3p/MET axis. Am J Transl Res. 2021;13(10):11144-11161. Pub- lished online 2021 Oct 15.

Vierbuchen T, Agarwal S, Johnson JL, et al. The lncRNA LUCAT1 is elevated in inflammatory disease and restrains inflammation by regulating the splicing and stability of NR4A2. Proc Natl Acad Sci U S A. 2023;120(1):e2213715120. https://doi.org/10.1073/pnas.2213715120

Huang Z, Liu B, Li X, et al. FOXD2-AS1 Binding to MYC activates EGLN3 to affect the malignant progression of clear cell renal cell carcinoma. J Biochem Mol Toxicol. 2024;38(12):e70083. https://doi.org/10.1002/jbt.70083

Ma Z, Liang H, Cui R, et al. Construction of a risk model and prediction of prognosis and immunotherapy based on cuproptosis-related LncRNAs in the urinary system pan-cancer. Eur J Med Res. 2023;28:198. https://doi. org/10.1186/s40001-023-01173-9

Huang G, Huang Y, Zhang C, et al. Identification of cuproptosis-related long noncoding RNA signature for predict- ing prognosis and immunotherapy response in bladder cancer. Sci Rep. 2022;12:21386. https://doi.org/10.1038/ s41598-022-25998-2

Zhu S., Li H., Fan Y, et al. Comprehensive analysis of cuproptosis-related lncRNAs signature to predict prognosis in bladder urothelial carcinoma. BMC Urol. 2023;23:124. https://doi.org/10.1186/s12894-023-01292-9

Wu L, Chen W, Cao Y, et al. A novel cuproptosis-related lncRNAs signature predicts prognosis in bladder cancer.

Aging (Albany NY). 2023;15:6445-6466 . https://doi.org/10.18632/aging.204861

Wang Y, Zhao Y, Liu Q, et al. Identifying functional cuproptosis-related long non-coding RNAs in patients with bladder cancer. Transl Cancer Res 2024;13(10):5178-5189. https://doi.org/10.21037/tcr-23-2367

Tang X, Jiang F, Wang X, et al. Identification of the ferroptosis-related long non-coding rnas signature to improve the prognosis prediction in papillary renal cell carcinoma. Front Surg. 2022;9:741726. https://doi.org/10.3389/ fsurg.2022.741726

Wu Z, Huang X, Cai M, et al. Potential biomarkers for predicting the overall survival outcome of kidney renal papil- lary cell carcinoma: an analysis of ferroptosis-related LNCRNAs. BMC Urol. 2022;22:152. https://doi.org/10.1186/ s12894-022-01037-0

Li W, Xiong Y, Zhu J, et al. Establishing a prognostic model with ferroptosis-related long non-coding RNAs in blad- der cancer. Transl Cancer Res. 2023;12(8):2023-2032. https://doi.org/10.21037/tcr-23-194

Hou J, Lu Z, Cheng X, et al. Ferroptosis-related long non-coding RNA signature predicts the prognosis of bladder cancer. BMC Cancer. 2022;22:719. https://doi.org/10.1186/s12885-022-09805-9

Yang Z, Li X, Zhou L, et al. Ferroptosis-related lncRNAs: Distinguishing heterogeneity of the tumour microen- vironment and predicting immunotherapy response in bladder cancer. Heliyon. 2024;10(11):e32018. https://doi. org/10.1016/j.heliyon.2024.e32018

Li X, Deng X, Liu T, et al. Disulfideptosis-associated lncRNAs reveal features of prognostic, immune escape, tumor mutation, and tumor malignant progression in renal clear cell carcinoma. Aging (Albany NY). 2024;16(4):3280- 3301. https://doi.org/10.18632/aging.205534

Xu K, Li D, Ji K, et al. Disulfidptosis-associated LncRNA signature predicts prognosis and immune response in kidney renal clear cell carcinoma. Biol Direct. 2024;19:71. https://doi.org/10.1186/s13062-024-00517-7

Liu Y, Tao H, Jia S, et al. Prognostic value and immune landscapes of disulfidptosisrelated lncRNAs in bladder can- cer. Mol Clin Oncol. 2025;22:19. https://doi.org/10.3892/mco.2024.2814

Downloads

Published

07.10.2025

How to Cite

Gordiiuk, V., Shevchenko, L., Todoryshyn, D., Kashuba, V., & Mankovska, O. (2025). INTERPLAY OF LNCRNAS, METABOLIC CELL DEATH, AND IMMUNE MICROENVIRONMENT IN GENITOURINARY MALIGNANCIES. Experimental Oncology, 47(2), 143–155. https://doi.org/10.15407/exp-oncology.2025.02.143