SOMATIC DEFICIENT MISMATCH REPAIR ASSESSED BY IMMUNOHISTOCHEMISTRY AND CLINICAL FEATURES IN BRAZILIAN GLIOBLASTOMA PATIENTS

Authors

  • C.A.F. Yamada Hospital Beneficência Portuguesa de São Paulo, São Paulo, Brazil
  • S.M.F. Malheiros Hospital Israelita Albert Einstein, São Paulo, Brazil
  • L.L.F. do Amaral Hospital Beneficência Portuguesa de São Paulo, São Paulo, Brazil
  • C.L.P. Lancellotti Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil

DOI:

https://doi.org/10.15407/exp-oncology.2023.03.297

Keywords:

brain tumor, glioblastoma, glioma, microsatellite instability, mismatch repair

Abstract

Background. Glioblastoma (GBM) is the most frequent primary malignant CNS tumor. Deficient mismatch repair (dMMR) is associated with better prognosis and is a biomarker for immunotherapy. Evaluation of MMR by immunohistochemistry (IHC) is accessible, cost effective, sensitive, and specific. Aim. Our objective was to investigate MMR proteins in adult GBM patients. Materials and Methods. We retrospectively analyzed 68 GBM samples to evaluate the proficiency of MMR genes expression assessed by IHC. Clinicopathologic and molecular features were compared in proficient (pMMR) or dMMR. Results. 10 (14.7%) samples showed dMMR, and the most frequent was MSH6 (100%) followed by MSH2, PMS2, and MLH1. We observed heterogeneous expression of dMMR in 5 GBMs. The median overall survival did not differ between pMMR (19.8 months; 0.2—30) and dMMR (16.9 months; 6.4—27.5) (p = 0.31). We observed a significantly higher overall survival associated with gross total resection compared to subtotal resection or biopsy (30.7 vs. 13.6 months, p = 0.02) and MGMT methylated status (29.6 vs. 19.8 months, p = 0.049). At the analysis time, 10 patients were still alive, all in the pMMR group. Conclusions. Our data demonstrated dMMR phenotype assessed by IHC in an expressive portion of GBM patients, however without significant impact on overall survival.

References

Ostrom QT, Patil N, Cioffi G, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013-2017. Neuro Oncol. 10 2020;22(12 Suppl 2):iv1-iv96. https://doi. org/10.1093/neuonc/noaa200

Stupp R1 MW, van den Bent MJ, Weller M, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352. https://doi.org/10.1056/NEJMoa043330

Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC- NCIC trial. Lancet Oncol. 2009;10(5):459-466. https://doi.org/10.1016/S1470-2045(09)70025-7

Stupp R, Taillibert S, Kanner A, et al. Effect of tumor-treating fields plus maintenance temozolomide vs main- tenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318(23):2306-2316. https://doi.org/10.1001/jama.2017.18718

Perry JR, Laperriere N, O'Callaghan CJ, et al. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med. 2017;376(11):1027-1037. https://doi.org/10.1056/NEJMoa1611977

Gilbert MR, Wang M, Aldape KD, et al. Dose-dense temozolomide for newly diagnosed glioblastoma: a random- ized phase III clinical trial. J Clin Oncol. 2013;31(32):4085-4091. https://doi.org/10.1200/JCO.2013.49.6968

Balana C, Vaz MA, Manuel Sepúlveda J, et al. A phase II randomized, multicenter, open-label trial of con- tinuing adjuvant temozolomide beyond 6 cycles in patients with glioblastoma (GEINO 14-01). Neuro Oncol. 2020;22(12):1851-1861. https://doi.org/10.1093/neuonc/noaa107

Chinot OL, Wick W, Mason W, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glio- blastoma. N Engl J Med. 2014;370(8):709-722. https://doi.org/10.1056/NEJMoa1308345

Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab for newly diagnosed glioblas- toma. N Engl J Med. 2014;370(8):699-708. https://doi.org/10.1056/NEJMoa1308573

Luchini C, Bibeau F, Ligtenberg MJL, et al. ESMO recommendations on microsatellite instability testing for im- munotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a sys- tematic review-based approach. Ann Oncol. 2019;30(8):1232-1243. https://doi.org/10.1093/annonc/mdz116

Geurts-Giele WR, Leenen CH, Dubbink HJ, et al. Somatic aberrations of mismatch repair genes as a cause of mi- crosatellite-unstable cancers. J Pathol. 2014;234(4):548-559. https://doi.org/10.1002/path.4419

Shuen AY, Lanni S, Panigrahi GB, et al. Functional repair assay for the diagnosis of constitutional mismatch repair deficiency from non-neoplastic tissue. J Clin Oncol. 2019;37(6):461-470. https://doi.org/10.1200/JCO.18.00474

Yoshino T, Pentheroudakis G, Mishima S, et al. JSCO-ESMO-ASCO-JSMO-TOS: international expert consensus recommendations for tumour-agnostic treatments in patients with solid tumours with microsatellite instability or NTRK fusions. Ann Oncol. 2020;31(7):861-872. https://doi.org/10.1016/j.annonc.2020.03.299

Lawes DA, SenGupta S, Boulos PB. The clinical importance and prognostic implications of microsatellite insta- bility in sporadic cancer. Eur J Surg Oncol. 2003;29(3):201-212. https://doi.org/10.1053/ejso.2002.1399

Boyiadzis MM, Kirkwood JM, Marshall JL, et al. Significance and implications of FDA approval of pembroli- zumab for biomarker-defined disease. J Immunother Cancer. 2018;6(1):35. https://doi.org/10.1186/s40425-018- 0342-x

Marcus L, Lemery SJ, Keegan P, Pazdur R. FDA approval summary: pembrolizumab for the treatment of mic- rosatellite instability-high solid tumors. Clin Cancer Res. 2019;25(13):3753-3758. https://doi.org/10.1158/1078- 0432.CCR-18-4070

Omuro A, Vlahovic G, Lim M, et al. Nivolumab with or without ipilimumab in patients with recurrent glioblas- toma: results from exploratory phase I cohorts of CheckMate 143. Neuro Oncol. 2018;20(5):674-686. https://doi. org/10.1093/neuonc/nox208

An investigational immuno-therapy study of nivolumab compared to temozolomide, each given with radiation therapy, for newly-diagnosed patients with glioblastoma (GBM, a malignant brain cancer) (CheckMate 498). https://clinicaltrials.gov/ct2/show/record/NCT02617589?term=checkmate+498&draw=2&rank=1 Accessed 10.01. 2021.

Reardon DA, Brandes AA, Omuro A, et al. Effect of nivolumab vs bevacizumab in patients with recurrent glio- blastoma: the checkmate 143 phase 3 randomized clinical trial. JAMA Oncol. Jul 2020;6(7):1003-1010. https://doi. org/10.1001/jamaoncol.2020.1024

Bouffet E, Larouche V, Campbell BB, et al. Immune checkpoint inhibition for hypermutant glioblastoma multi- forme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol. 2016;34(19):2206-2211. https:// doi.org/10.1200/JCO.2016.66.6552

Johanns TM, Miller CA, Dorward IG, et al. Immunogenomics of hypermutated glioblastoma: a patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discov. 2016;6(11):1230- 1236. https://doi.org/10.1158/2159-8290.CD-16-0575

Chamberlain MC, Kim BT. Nivolumab for patients with recurrent glioblastoma progressing on bevacizumab: a retrospective case series. J Neurooncol. 2017;133(3):561-569. https://doi.org/10.1007/s11060-017-2466-0

Roth P, Valavanis A, Weller M. Long-term control and partial remission after initial pseudoprogression of glio- blastoma by anti-PD-1 treatment with nivolumab. Neuro Oncol. 2017;19(3):454-456. https://doi.org/10.1093/ neuonc/now265

Reiss SN, Yerram P, Modelevsky L, Grommes C. Retrospective review of safety and efficacy of programmed cell death-1 inhibitors in refractory high grade gliomas. J Immunother Cancer. 2017;5(1):99. https://doi.org/10.1186/ s40425-017-0302-x

Cloughesy TF, Mochizuki AY, Orpilla JR, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival be- nefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 2019;25(3):477-486. https://doi.org/10.1038/s41591-018-0337-7

Sahebjam S, Forsyth PA, Tran ND, et al. Hypofractionated stereotactic re-irradiation with pembrolizumab and bevacizumab in patients with recurrent high-grade gliomas: results from a phase I study. Neuro Oncol. 2021;23(4):677-686. https://doi.org/10.1093/neuonc/noaa260

Lombardi G, Barresi V, Indraccolo S, et al. Pembrolizumab activity in recurrent high-grade gliomas with partial or complete loss of mismatch repair protein expression: a monocentric, observational and prospective pilot study. Cancers (Basel). 2020;12(8). https://doi.org/10.3390/cancers12082283

Touat M, Li YY, Boynton AN, et al. Mechanisms and therapeutic implications of hypermutation in gliomas. Na­ ture. 2020;580(7804):517-523. https://doi.org/10.1038/s41586-020-2209-9

Suwala AK, Stichel D, Schrimpf D, et al. Primary mismatch repair deficient IDH-mutant astrocytoma (PMMRDIA) is a distinct type with a poor prognosis. Acta Neuropathol. 2021;141(1):85-100. https://doi.org/10.1007/s00401- 020-02243-6

Rodríguez-Hernández I, Garcia JL, Santos-Briz A, et al. Integrated analysis of mismatch repair system in malig- nant astrocytomas. PLoS One. 2013;8(9):e76401. https://doi.org/10.1371/journal.pone.0076401

Indraccolo S, Lombardi G, Fassan M, et al. Genetic, epigenetic, and immunologic profiling of MMR-deficient relapsed glioblastoma. Clin Cancer Res. 2019;25(6):1828-1837. https://doi.org/10.1158/1078-0432.CCR-18-1892

Tepeoglu M, Borcek P, Ozen O, Altinors N. Microsatellite Instability in glioblastoma: is it really relevant in tumor prognosis? Turk Neurosurg. 2019;29(5):778-784. https://doi.org/10.5137/1019-5149.JTN.27333-19.1

Çakir E, SayĞin İ, Ercİn ME. Investigation of the relationship between immune checkpoints and mismatch repair defi cy in recurrent and non-recurrent glioblastoma. Turk J Med Sci. 2021;51(4):1800-1808. https:// doi.org/10.3906/sag-2010-166

Cho YA, Kim D, Lee B, Shim JH, Suh YL. Incidence, clinicopathologic, and genetic characteristics of mismatch repair gene-mutated glioblastomas. J Neurooncol. 2021;153(1):43-53. https://doi.org/10.1007/s11060-021-03710-0

Lindor NM, Burgart LJ, Leontovich O, et al. Immunohistochemistry versus microsatellite instabili- ty testing in phenotyping colorectal tumors. J Clin Oncol. 2002;20(4):1043-8. https://doi.org/10.1200/ JCO.2002.20.4.1043

Shia J, Klimstra DS, Nafa K, et al. Value of immunohistochemical detection of DNA mismatch repair proteins in predicting germline mutation in hereditary colorectal neoplasms. Am J Surg Pathol. 2005;29(1):96-104. https:// doi.org/10.1097/01.pas.0000146009.85309.3b

Sarode VR, Robinson L. Screening for Lynch syndrome by immunohistochemistry of mismatch repair pro- teins: significance of indeterminate result and correlation with mutational studies. Arch Pathol Lab Med. 2019;143(10):1225-1233. https://doi.org/10.5858/arpa.2018-0201-OA

McCord M, Steffens A, Javier R, et al. The efficacy of DNA mismatch repair enzyme immunohistochemistry as a screening test for hypermutated gliomas. Acta Neuropathol Commun. 2020;8(1):15. https://doi.org/10.1186/ s40478-020-0892-2

Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231-1251. https://doi.org/10.1093/neuonc/noab106

Alexander BM, Trippa L, Gaffey S, et al. Individualized screening trial of innovative glioblastoma therapy (IN- SIGhT): a bayesian adaptive platform trial to develop precision medicines for patients with glioblastoma. JCO Precis Oncol. 2019;3: PO.18.00071. https://doi.org/10.1200/PO.18.00071

Wick W, Dettmer S, Berberich A, et al. N2M2 (NOA-20) phase I/II trial of molecularly matched targeted thera- pies plus radiotherapy in patients with newly diagnosed non-MGMT hypermethylated glioblastoma. Neuro On­ col. 2019;21(1):95-105. https://doi.org/10.1093/neuonc/noy161

Almuhaisen G, Alhalaseh Y, Mansour R, et al. Frequency of mismatch repair protein deficiency and PD-L1 in high-grade gliomas in adolescents and young adults (AYA). Brain Tumor Pathol. 2021;38(1):14-22. https://doi. org/10.1007/s10014-020-00379-7

Barthel FP, Johnson KC, Varn FS, et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature. 2019;576(7785):112-120. https://doi.org/10.1038/s41586-019-1775-1

Viana-Pereira M, Lee A, Popov S, et al. Microsatellite instability in pediatric high grade glioma is associated with genomic profile and differential target gene inactivation. PLoS One. 2011;6(5):e20588. https://doi.org/10.1371/ journal.pone.0020588

Kim H, Lim KY, Park JW, et al. Sporadic and Lynch syndrome-associated mismatch repair-deficient brain tu- mors. Lab Invest. 2022;102(2):160-171. https://doi.org/10.1038/s41374-021-00694-3

Cortes-Ciriano I, Lee S, Park WY, et al. A molecular portrait of microsatellite instability across multiple cancers.

Nat Commun. 2017;8:15180. https://doi.org/10.1038/ncomms15180

Weinstein JN, Collisson EA, Mills GB, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet. Oct 2013;45(10):1113-1120. https://doi.org/10.1038/ng.2764

Bonneville R, Krook MA, Kautto EA, et al. Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol. 2017;2017 https://doi.org/10.1200/PO.17.00073

Kautto EA, Bonneville R, Miya J, et al. Performance evaluation for rapid detection of pan-cancer microsatellite instability with MANTIS. Oncotarget. 2017;8(5):7452-7463. https://doi.org/10.18632/oncotarget.13918

Hause RJ, Pritchard CC, Shendure J, Salipante SJ. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med. 11 2016;22(11):1342-1350. https://doi.org/10.1038/nm.4191

Zhao P, Li L, Jiang X, Li Q. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/ PD-L1 immunotherapy efficacy. J Hematol Oncol. 2019;12(1):54. https://doi.org/10.1186/s13045-019-0738-1

Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. Jun 25 2015;372(26):2509-2520. https://doi.org/10.1056/NEJMoa1500596

Kim J, Lee IH, Cho HJ, et al. Spatiotemporal evolution of the primary glioblastoma genome. Cancer Cell. 2015;28(3):318-328. https://doi.org/10.1016/j.ccell.2015.07.013

Qazi MA, Vora P, Venugopal C, et al. Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma. Ann Oncol. 2017;28(7):1448-1456. https://doi.org/10.1093/annonc/mdx169

McCarthy AJ, Capo-Chichi JM, Spence T, et al. Heterogenous loss of mismatch repair (MMR) protein expression: a challenge for immunohistochemical interpretation and microsatellite instability (MSI) evaluation. J Pathol Clin Res. 2019;5(2):115-129. https://doi.org/10.1002/cjp2.120

Downloads

Published

28.12.2023

How to Cite

Yamada, C., Malheiros, S., do Amaral, L., & Lancellotti, C. (2023). SOMATIC DEFICIENT MISMATCH REPAIR ASSESSED BY IMMUNOHISTOCHEMISTRY AND CLINICAL FEATURES IN BRAZILIAN GLIOBLASTOMA PATIENTS. Experimental Oncology, 45(3), 297–311. https://doi.org/10.15407/exp-oncology.2023.03.297

Issue

Section

Original contributions