NEUROENDOCRINE PEPTIDES IN THE PATHOGENESIS OF COLORECTAL CARCINOMA

Authors

  • A. Ramírez-Perdomo Pathology, University Foundation of Health Sciences, Bogota Calle 10 #18-75, ColombiaPathology, University Foundation of Health Sciences, Bogota Calle 10 #18-75, Colombia
  • G. Márquez-Barrios Pathology, University Foundation of Health Sciences, Bogota Calle 10 #18-75, Colombia
  • L.D. Gutiérrez Basic Health Sciences Group, University Foundation of Health Sciences, Bogota, Colombia
  • R. Parra-Medina Research Institute, University Foundation of Health Sciences, Bogota, Colombia

DOI:

https://doi.org/10.15407/exp-oncology.2023.01.003

Keywords:

carcinoma, colon, neuroendocrine peptides, GLP2, bombesin, cholecystokinin

Abstract

Colorectal carcinoma (CRC) is the third most frequent neoplasm worldwide and the second leading cause of mortality. Neuroendocrine peptides such as glucagon, bombesin, somatostatin, cholecystokinin, and gastrin as well as growth factors such as platelet-derived growth factor, epidermal growth factor, insulin-like growth factor, and fibroblast growth factor have been postulated as being involved in carcinogenesis. The fact that these neuroendocrine peptides are involved in the development of CRC through the activation of growth factors that stimulate a series of molecular pathways that activate oncogenic signaling mechanisms is emphasized in this review. Peptides such as CCK1, serotonin, and bombesin have been found to be over-expressed in human tumor tissues. Meanwhile, the expression of peptides such as GLP2 has been seen mainly in murine models. The information contained in this review provides a better understanding of the role these peptides play in the pathogenesis of CRC for basic and clinical science studies.

References

Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71: 209–249. doi: 10.3322/caac.21660

Johnson CM, Wei C, Ensor JE, et al. Meta-analyses of colorectal cancer risk factors. Cancer Causes Control 2013; 24: 1207–1222. doi: 10.1007/s10552-013-0201-5

Müller MF, Ibrahim AE, Arends MJ. Molecular pathological classification of colorectal cancer., Virchows Arch 2016; 469: 125–134. doi: 10.1007/s00428-016-1956-3

Mármol I, Sánchez-de-Diego C, Dieste AP, et al. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int J Mol Sci 2017; 18: 1–39. doi: 10.3390/ijms18010197

Al-Shamsi HO, Jones J, Fahmawi Y, et al. Molecular spectrum of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC somatic gene mutations in Arab patients with colorectal cancer: Determination of frequency and distribution pattern. J Gastrointest Oncol 2016; 7: 882–902. doi: 10.21037/jgo.2016.11.02

Nguyen LH, Goel A, Chung DC. Pathways of colorectal carcinogenesis. gastroenterology 2020; 158: 291–302. doi: 10.1053/j.gastro.2019.08.059

Cisyk A, Nugent Z, Wightman RH, et al. Characterizing microsatellite instability and chromosome instability in interval colorectal cancers. Neoplasia 2018; 20: 943–950. doi: 10.1016/j.neo.2018.07.007

Baracaldo R, Peña L, Gómez O, Polo JF, et al. Características histopatológicas del carcinoma colorrectal con inestabilidad microsatelital (IMS). Revista Repertorio de Medicina y Cirugía 2020; 29: 32–40. Available from: http://creativecommons.org/licenses/by-nc-nd/4.0/

Parra-Medina R, Moreno-Lucero P, Jimenez-Moreno J, et al. Neuroendocrine neoplasms of gastrointestinal tract and secondary primary synchronous tumors: A systematic review of case reports. Casualty or causality? PLoS ONE 2019; 14: 1–16. doi: 10.1371/journal.pone.021664

Cooper PE, van Uum SHM. Bradley and Daroff Neurology in Clinical Practice. 2021, Vol. 2: 730–747. Available from: https://www-clinicalkey-es.fucsalud.basesdedatosezproxy.com/#!/content/book/3-s2.0-B9780323642613000504?scrollTo=%23hl0001157. Accessed: Aug 24, 2021.

Klöppel G. Neuroendocrine neoplasms: dichotomy, origin and classifications. Visc Med 2017; 33: 324-330. doi: 10.1159/000481390

Andersson-Rolf A, Clevers H, Dayton TL. Diffuse Hormonal Systems. In: Feingold KR, Anawalt B, Blackman MR, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279025/

Harrison E, Lal S, McLaughlin JT. Enteroendocrine cells in gastrointestinal pathophysiology. Current Opinion Pharmacol 2013; 13: 941–945 doi: 10.1016/j.coph.2013.09.012

Gunawardene AR, Corfe BM, Staton CA. Classification and functions of enteroendocrine cells of the lower gastrointestinal tract. Int J Exp Pathol 2011; 92: 219–231. doi: 10.1111/j.1365-2613.2011.00767.x

Chen T, Zeineldin M, Johnson BA, et al. Colonic epithelial adaptation to EGFR-independent growth induces chromosomal instability and is accelerated by prior injury. Neoplasia 2021; 23: 448–501. doi: 10.1016/j.neo.2021.03.010

Stoian M, Stoica V, Radulian G, Davila C. Stem cells and colorectal carcinogenesis. J Med Life 2016; 9: 6–11.

Allaire JM, Crowley SM, Law HT, et al. The intestinal epithelium: central coordinator of mucosal immunity. Trends Immunol 2018; 39: 677–696. doi: 10.1016/j.it.2018.04.002

Kannen V, Britto Garcia S, Stopper H, Waaga-Gasser AM. Glucagon-like peptide 2 in colon carcinogenesis: Possible target for anti-cancer therapy? Pharmacol Therap 2013; 139: 87–94. doi: 10.1016/j.pharmthera.2013.04.007

Orhan A, Gögenur I, Kissow H. The intestinotrophic effects of glucagon-like peptide-2 in relation to intestinal neoplasia. J Clin Endocrinol Metabolism 2018; 103: 2827–2837. doi: 10.1210/jc.2018-00655

Pedersen J, Pedersen NB, Brix SW, et al. The glucagon-like peptide 2 receptor is expressed in enteric neurons and not in the epithelium of the intestine. Peptides 2015; 67: 20–28. doi: 10.1016/j.peptides.2015.02.007

Shawe-Taylor M, Dinesh Kumar J, Holden W, et al. Glucagon-like petide-2 acts on colon cancer myofibroblasts to stimulate proliferation, migration and invasion of both myofibroblasts and cancer cells via the IGF pathway. Peptides 2017; 91: 49–57. doi: 10.1016/j.peptides.2017.03.008

Sipos F, Székely H, Kis ID, et al. Relation of the IGF/IGF1R system to autophagy in colitis and colorectal cancer. World J Gastroenterol 2017; 23: 8109–8119. doi: 10.3748/wjg.v23.i46.8109

Kasprzak A, Adamek A. Insulin-like growth factor 2 (IGF2) signaling in colorectal cancer—from basic research to potential clinical applications. Int J Mol Sci 2019; 20: 1–28. doi: 10.3390/ijms20194915

Burrin DG, Stoll B, Guan X, Cui L, et al. Glucagon-like peptide 2 dose-dependently activates intestinal cell survival and proliferation in neonatal piglets. Endocrinol 2005; 146: 22–32. doi: 10.1210/en.2004-1119

Rowland KJ, Brubaker PL. The “cryptic” mechanism of action of glucagon-like peptide-2. Am J Physiol Gastrointest Liver Physiol 2011; 301: 1–8. doi: 10.1152/ajpgi.00039.2011

Itatani Y, Kawada K, Sakai Y. Transforming growth factor-β signaling pathway in colorectal cancer and its tumor microenvironment. Int J Mol Sci 2019; 20: 1–16. doi: 10.3390/ijms20235822

Thulesen J, Hartmann B, Hare KJ, et al. Glucagon-like peptide 2 (GLP-2) accelerates the growth of colonic neoplasms in mice. Gut 2004; 53: 1145–1150. doi: 10.1136/gut.2003.035212

Iakoubov R, Lauffer LM, et al. Carcinogenic effects of exogenous and endogenous glucagon-like peptide-2 in azoxymethane-treated mice. Endocrinol 2009; 150: 4033–4043. doi: 10.1210/en.2009-0295

Trivedi S, Wiber SC, El-Zimaity HM, Brubaker PL. Glucagon-like peptide-2 increases dysplasia in rodent models of colon cancer. Am J Physiol Gastrointest Liver Physiol 2012; 302: 840–849. doi: 10.1152/ajpgi.00505.2011

Körner M, Rehmann R, Reubi JC. GLP-2 receptors in human disease: High expression in gastrointestinal stromal tumors and Crohn’s disease. Mol Cell Endocrinol 2012; 364: 46–53. doi: 10.1016/j.mce.2012.08.008

Bengi G, Kayahan H, Akarsu M, et al. Does glucagon like peptide-2 receptor expression have any effect on the development of human colorectal cancer? Turk J Gastroenterol 2011; 22: 388–394. doi: 10.4318/tjg.2011.0243

Tappenden KA, Edelman J, Joelsson B. Teduglutide enhances structural adaptation of the small intestinal mucosa in patients with short bowel syndrome. J Clin Gastroenterol 2013; 47: 602–607. doi: 10.1097/MCG.0b013e3182828f57

Schwartz LK, O’Keefe SJD, Fujioka K, et al. Long-Term Teduglutide for the treatment of patients with intestinal failure associated with short bowel syndrome. Clin Translat Gastroenterol 2016; 7: 1–9. doi:10.1038/ctg.2015.69

Landgrebe Ring L, Nerup N, Bekker Jeppesen P, et al. Glucagon like peptide-2 and neoplasia; a systematic review. Expert Rev Gastroenterol Hepatol 2018; 12: 257–264. doi: 10.1080/17474124.2018.1417032

Hira T, Pinyo J, Hara H. What Is GLP-1 Really Doing in Obesity? Trends Endocrinol Metabol 2020; 31: 71–80. doi: 10.1016/j.tem.2019.09.003

Greiner TU, Bäckhed F. Microbial regulation of GLP-1 and L-cell biology. Mol Metab 2016; 5: 753–758. doi: 10.1016/j.molmet.2016.05.012

Müller TD, Finan B, Bloom SR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30: 72–130. doi: 10.1016/j.molmet.2019.09.010

Koehler JA, Kain T, Drucker DJ. Glucagon-like peptide-1 receptor activation inhibits growth and augments apoptosis in murine CT26 colon cancer cells. Endocrinol 2011; 152: 3362–3372. doi: 10.1210/en.2011-1201

Vangoitsenhoven R, Mathieu C, van der Schueren B. GLP1 and cancer: Friend or foe? Endocrine Related Cancer 2012; 19: 77–88. doi: 10.1530/ERC-12-0111

Guida C, Stephen S, Guitton R, Ramracheya RD. The role of PYY in pancreatic islet physiology and surgical control of diabetes. Trends Endocrinol Metab 2017; 28: 626–636. doi: 10.1016/j.tem.2017.04.00

El-Salhy M, Hatlebakk JG, Hausken T. Possible role of peptide YY (PYY) in the pathophysiology of irritable bowel syndrome (IBS). Neuropeptides 2020; 79: 1–7. doi: 10.1016/j.npep.2019.101973

Lafferty RA, Flatt PR, Irwin N. Emerging therapeutic potential for peptide YY for obesity-diabetes. Peptides 2018; 100: 269–274. doi: 10.1016/j.peptides.2017.11.005

Zygulska AL, Furgala A, Kaszuba-Zwoińska J, et al. Changes in plasma levels of cholecystokinin, neurotensin, VIP and PYY in gastric and colorectal cancer – Preliminary results. Peptides 2019; 122: 1–7. doi: 10.1016/j.peptides.2019.170148

Rehfeld JF. Cholecystokinin-From local gut hormone to ubiquitous messenger. Front Endocrinol 2017; 8: 1–8. doi: 10.3389/fendo.2017.00047

Rehfeld JF. Cholecystokinin expression in tumors: biogenetic and diagnostic implications. Future Oncol 2016; 12: 2135–2147.

Rehfeld JF. Cholecystokinin and the hormone concept. Endocrine Connect 2021; 10: 139–50. doi: 10.1530/EC-21-0025

Zeng Q, Ou L, Wang W, Guo DY. Gastrin, cholecystokinin, signaling, and biological activities in cellular processes. Front Endocrinol 2020; 11: 1–16. doi: 10.3389/fendo.2020.00112

Rai R, Chandra V, Tewari M, et al. Cholecystokinin and gastrin receptors targeting in gastrointestinal cancer. Surg Oncol 2012; 21: 281–292. doi: 10.1016/j.suronc.2012.06.004

Bai B, Chen X, Zhang R, et al. Dual-agonist occupancy of orexin receptor 1 and cholecystokinin A receptor heterodimers decreases G-protein–dependent signaling and migration in the human colon cancer cell line HT-29. Biochim Biophys Acta 2017; 1864: 1153–1164. doi: 10.1016/j.bbamcr.2017.03.003

Huang BP, Lin CH, Chen YC, Kao SH. Expression of cholecystokinin receptors in colon cancer and the clinical correlation in Taiwan. Tumor Biol 2016; 37: 1–6. doi: 10.1007/s13277-015-4306-1

Chang J, Liu ZS, Song DF, et al. Cholecystokinin type 2 receptor in colorectal cancer: diagnostic and therapeutic target. J Cancer Res Clin Oncol 2020; 146: 2205–2217. doi: 10.1007/s00432-020-03273-z

Chang J, Liu X, Ren H, et al. Pseudomonas exotoxin A-based immunotherapy targeting CCK2R-expressing colorectal malignancies: an in vitro and in vivo evaluation. Mol Pharmaceut 2021; 18: 2285–2297. doi: 10.1021/acs.molpharmaceut.1c00095

Bakshi A, Prasanna. Affiliations T. Biochemistry, Serotonin. StatPearls Publuishing 2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK560856/?report=printable

Kannen V, Bader M, Sakita JY, et al. The dual role of serotonin in colorectal cancer. Trends Endocrinol Metab 2020; 31: 611–625. doi:10.1016/j.tem.2020.04.008

Sarrouilhe D, Mesnil M. Serotonin and human cancer: A critical view. Biochimie 2019; 161: 46–50. doi: 10.1016/j.biochi.2018.06.016

Shah PA, Park CJ, Shaughnessy MP, Cowles RA. Serotonin as a mitogen in the gastrointestinal tract: revisiting a familiar molecule in a new role. Cell Mol Gastroenterol Hepatol 2021; 12: 1–12. doi: 10.1016/j.jcmgh.2021.05.008

Balakrishna Pragathi, George Sagila, Hatoum Hassan, Mukherjee Sarbajit. Serotonin pathway in cancer. Int J Mol Sci 2021; 22: 1–10. doi: 10.3390/ijms22031268

Ala M. Tryptophan metabolites modulate inflammatory bowel disease and colorectal cancer by affecting immune system. Int Rev Immunol 2022; 41: 326-345. doi: 10.1080/08830185.2021.1954638

Gomes-Porras M, Cárdenas-Salas J, Álvarez-Escolá C. Somatostatin analogs in clinical practice: A review. Int J Mol Sci 2020; 21: 1–27. doi:10.3390/ijms21051682

Ampofo E, Nalbach L, Menger MD, Laschke MW. Regulatory mechanisms of somatostatin expression. Int J Mol Sci 2020; 21: 1–15. doi: 10.3390/ijms21114170

Ma J, Chen J, Louro B, et al. Somatostatin 3 loss of function impairs the innate immune response to intestinal inflammation. Aquaculture Fisheries 2021; 6: 548–557. doi: 10.1016/j.aaf.2020.09.001

Leiszter K, Sipos F, Galamb O, et al. Promoter hypermethylation-related reduced somatostatin production promotes uncontrolled cell proliferation in colorectal cancer. PLoS ONE 2015; 10: 1–17. doi:10.1371/journal.pone.011833

Johnbeck CB, Mortensen J. Somatostatin receptor imaging PET in neuroendocrine neoplasm. PET Clinics 2021; 16: 191–203. doi: 10.1016/j.cpet.2020.12.011

Song S, Li X, Geng C, Li Y, Wang C. Somatostatin stimulates colonic MUC2 expression through SSTR5-Notch-Hes1 signaling pathway. Biochem Biophys Res Commun 2020; 521: 1070–1076. doi: 10.1016/j.bbrc.2019.11.034

Kasprzak A. Somatostatin and its receptor system in colorectal cancer. Biomeicines 2021; 9: 1–35. doi: 10.3390/biomedicines9111743

LaPelusa A, Jan A. Biochemistry, Bombesin. StatPearls Publ 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK541129/

Liu X, Zhao J, Li F, et al. Bombesin enhances TGF-β growth inhibitory effect through apoptosis induction in intestinal epithelial cells. Regulat Peptides 2009; 158: 26–31. doi: 10.1016/j.regpep.2009.07.010

Moreno P, Ramos-Álvarez I, Moody TW, Jensen RT. Bombesin related peptides/receptors and their promising therapeutic roles in cancer imaging, targeting and treatment. Expert Opinion Therap Targets 2016; 20: 1055–1073. doi:10.1517/14728222.2016.1164694

Cassano G, Resta N, Gasparre G, et al. The proliferative response of HT-29 human colon adenocarcinoma cells to bombesin-like peptides. Cancer Lett 2001; 172: 151–157. doi: 10.1016/s0304-3835(01)00642-5

Liu P, Tu Y, Tao J, et al. GRPR-targeted SPECT imaging using a novel bombesin-based peptide for colorectal cancer detection. Biomaterials Sci 2020; 8: 6764–6772. doi: 10.1039/D0BM01432J

Downloads

Published

26.06.2023

How to Cite

Ramírez-Perdomo, A., Márquez-Barrios, G., Gutiérrez, L., & Parra-Medina, R. (2023). NEUROENDOCRINE PEPTIDES IN THE PATHOGENESIS OF COLORECTAL CARCINOMA. Experimental Oncology, 45(1), 3–16. https://doi.org/10.15407/exp-oncology.2023.01.003