Immunophenotypic features of leukemic stem cells and bulk of blasts in acute myeloid leukemia

Автор(и)

  • T.S. Ivanivska Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького
  • L.M. Sklyarenko Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького
  • M.P. Zavelevich Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького
  • A.A. Philchenkov Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького
  • S.V. Koval Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького
  • A.S. Polishchuk Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького
  • D.F. Gluzman Інститут експериментальної патології, онкології і радіобіології ім. Р.Є. Кавецького

DOI:

https://doi.org/10.32471/exp-oncology.2312-8852.vol-41-no-3.13492

Ключові слова:

acute myeloid leukemia., bulk of blast cells, hematopoiesis, hematopoietic stem cells, leukemic stem cells, targeted therapy

Анотація

Summary. According to the modern concept, leukemic stem cells (LSC) in acute myeloid leukemia (AML) are distinct from the bulk of leukemic cells in bone marrow and peripheral blood of AML patients. Nevertheless, LSC are responsible for managing all the hierarchy of the bulk of leukemic blast populations. This mini-review provides brief information on the distinctive features of LSC and blast cells in cytologically recognized types of AML. The study of different phenotypes of LSC and blast cells in AML with the aid of up-to-date flow cytometric techniques is important both for the deep insight into the mechanisms of leukemogenesis and development of novel strategies of target therapy. The urgent need for extending the diagnostic panel of monoclonal antibodies used for diagnosing AML is beyond doubt.

Посилання

Jan M, Chao MP, Cha AC, et al. Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker. Proc Natl Acad Sci USA 2011; 108: 5009–14.

Zeijlemaker W, Kelder A, Oussoren-Brockhoff YJ, et al. A simple one-tube assay for immunophenotypical quantification of leukemic stem cells in acute myeloid leukemia. Leukemia 2016; 30: 439–46.

Pollyea DA, Jordan CT. Therapeutic targeting of acute myeloid leukemia stem cells. Blood 2017; 129: 1627–35.

Wang X, Huang S, Chen JL. Understanding of leukemic stem cells and their clinical implications. Mol Cancer 2017; 16: 2.

Hanekamp D, Cloos J, Schuurhuis GJ. Leukemic stem cells: identification and clinical application. Int J Hematol 2017; 105: 549–57.

Witte KE, Ahlers J, Schäfer I, et al. High proportion of leukemic stem cells at diagnosis is correlated with unfavorable prognosis in childhood acute myeloid leukemia. Pediatr Hematol Oncol 2011; 28: 91–9.

Hwang K, Park CJ, Jang S, et al. Flow cytometric quantification and immunophenotyping of leukemic stem cells in acute myeloid leukemia. Ann Hematol 2012; 91: 1541–6.

Zeijlemaker W, Grob T, Meijer R, et al. CD34+CD38- leukemic stem cell frequency to predict outcome in acute myeloid leukemia. Leukemia 2019; 33: 1102–12.

Thomas D, Majeti R. Biology and relevance of human acute myeloid leukemia stem cells. Blood 2017; 129: 1577–85.

Al-Mawali A, Pinto AD, Al-Zadjali S. CD34+CD38-CD123+ cells are present in virtually all acute myeloid leukaemia blasts: a promising single unique phenotype for minimal residual disease detection. Acta Haematol 2017; 138: 175–81.

Han L, Jorgensen JL, Brooks C, et al. Antileukemia efficacy and mechanisms of action of SL-101, a novel anti-CD123 antibody conjugate, in acute myeloid leukemia. Clin Cancer Res 2017; 23: 3385–95.

Dick JE. Normal and leukemic human stem cells assayed in SCID mice. Semin Immunol 1996; 8: 197–206.

Passegué E, Jamieson CH, Ailles LE, Weissman IL. Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA 2003; 100: 11842–9.

Bene MCh, Porwit A. Examples of Immunophenotypic Features in Various Categories of Acute Leukaemia. Chapter 5. In: Multiparameter Flow Cytometry in the Diagnosis of Hematologic Malignancies. A. Porwit, M.Ch. Bene, eds. Cambridge University Press 2018: 75–88.

Bain BJ. Leukemia Diagnosis, 5th ed. New Jersey: John Wiley & Sons, 2017. 524 p.

Lugovskaya SA, Pochtar ME, Tupitsyn NN. Immunophenotyping in Diagnosis of Hematoblastoses. Moscow: Triada, 2005. 168 p. (in Russian).

Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127: 2391–405.

Gluzman DF, Abramenko IV, Sklyarenko LM, Nadgornaya VA. Laboratory Diagnosis of Oncohematological Diseases, Kyiv: Morion, 1996. 335 p. (in Russian).

Gluzman DF, Abramenko IV, Sklyarenko LM, et al. Diagnosis of Leukemia. Atlas and Practical Guide. Kyiv: Morion, 2000. 224 p. (in Russian).

van Rhenen A1, Moshaver B, Kelder A, et al. Aberrant marker expression patterns on the CD34+CD38- stem cell compartment in acute myeloid leukemia allows to distinguish the malignant from the normal stem cell compartment both at diagnosis and in remission. Leukemia 2007; 21: 1700–7.

Terwijn M, Zeijlemaker W, Kelder A, et al. Leukemic stem cell frequency: a strong biomarker for clinical outcome in acute myeloid leukemia. PLoS One 2014; 9: e107587.

Zeijlemaker W, Kelder A, Wouters R, et al. Absence of leukaemic CD34+ cells in acute myeloid leukaemia is of high prognostic value: a longstanding controversy deciphered. Br J Haematol 2015; 171: 227–38.

##submission.downloads##

Опубліковано

04.06.2023

Як цитувати

Ivanivska, T., Sklyarenko, L., Zavelevich, M., Philchenkov, A., Koval, S., Polishchuk, A., & Gluzman, D. (2023). Immunophenotypic features of leukemic stem cells and bulk of blasts in acute myeloid leukemia. Експериментальна онкологія, 41(3), 207–209. https://doi.org/10.32471/exp-oncology.2312-8852.vol-41-no-3.13492

Номер

Розділ

Оригінальні внески