ROLE OF RIBONUCLEASES IN THE REGULATION OF IMMUNE RESPONSE

Authors

  • V. SHLYAKHOVENKO R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • O. SAMOYLENKO R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • A. VERBINENKO R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
  • I. GANUSEVICH R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine

DOI:

https://doi.org/10.15407/exp-oncology.2024.03.192

Keywords:

ribonuclease, topography, immunomodulatory activity, homeostatic function, transcription influence, biological defense, immune defense

Abstract

Ribonucleases (RNases) perform many different functions in living systems. They are responsible for the formation and processing of various ribonucleic acids (RNAs), including the messenger RNA and all types of microRNAs, and determine the duration of the existence of different RNAs in the cell and extracellular environment. RNases are ubiquitously expressed in many tissue types. This short review discusses the major types and main functions of RNases, their homeostatic functions, influence of transcription, immunomodulation, and the role of extracellular RNases in the immune defense mechanisms

References

Siraj YA. Promises of eukaryotic ribonucleases for cancer treatment: a systematic review. Transl Med Commun. 2022;7(1):5. https://doi.org/10.1186/s41231­022­00113­9

Baranzini N, Monti L, Vanotti M, et al. AIF­1 and RNASET2 play complementary roles in the innate immune re­ sponse of medicinal leech. J Innate Immun. 2019;11(2):150­167. https://doi.org/10.1159/000493804

Boix E, Acquati F, Leonidas D, et al. Role of ribonucleases in immune response regulation during infection and can­ cer. Front Immunol. 2020;11:236. https://doi.org/10.3389/fimmu.2020.00236

Lyons SM, Fay MM, Akiyama Y, et al. RNA biology of angiogenin: Current state and perspectives. RNA Biol. 2017;14(2):171­178. https://doi.org/10.1080/15476286.2016.1272746

Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14­20. https://doi.org/10.1016/j.immuni.2014.06.008

Lu L, Li J, Moussaoui M, et al. Immune modulation by human secreted RNases at the extracellular space. Front Im- munol. 2018;9:1012. https://doi.org/10.3389/fimmu.2018.01012

Su AI, Wiltshire T, Batalov S, et al. A gene atlas of the mouse and human protein­encoding transcriptomes. Proc Natl Acad Sci U S A. 2004;101(16):6062­6067. https://doi.org/10.1093/oxfordjournals.pcp.a029599

Eller CH, Lomax JE, Raines RT. Bovine brain ribonuclease is the functional homolog of human ribonuclease 1. J Biol Chem. 2014;289(38):25996­26006. https://doi.org/10.1074/jbc.M114.566166

Rosenberg HF. Eosinophil­derived neurotoxin (EDN/RNase 2) and the mouse eosinophil­associated RNases (mEars): expanding roles in promoting host defense. Int J Mol Sci. 2015;16(7):15442­15455. https://doi.org/10.3390/ ijms160715442

Tota M, Łacwik J, Laska J, et al. The role of eosinophil­derived neurotoxin and vascular endothelial growth factor in the pathogenesis of eosinophilic asthma. Cells. 2023;12(9):1326. https://doi.org/10.3390/cells12091326

Torrent M, Sánchez D, Buzón V, et al. Comparison of the membrane interaction mechanism of two antimicrobial RNases: RNase 3/ECP and RNase 7. Biochim Biophys Acta (BBA)-Biomembranes. 2009;1788(5):1116­1125. https:// doi.org/10.1016/j.bbamem.2009.01.013

Murtha MJ, Eichler T, Bender K, et al. Insulin receptor signaling regulates renal collecting duct and intercalated cell antibacterial defenses. J Clin Invest. 2018;128(12):5634­5646. https://doi.org/10.1172/JCI98595

Tello­Montoliu A, Patel JV, Lip GYH. Angiogenin: a review of the pathophysiology and potential clinical applica­ tions. J Thromb Haemost. 2006;4(9):1864­1874. https://doi.org/10.1111/j.1538­7836.2006.01995.x

Prats­Ejarque G, Blanco JA, Salazar VA, et al. Characterization of an RNase with two catalytic centers. Human RNase6 catalytic and phosphate­binding site arrangement favors the endonuclease cleavage of polymeric substrates. Biochim Biophys Acta Gen Subj. 2019;1863(1):105­117. https://doi.org/10.1016/j.bbagen.2018.09.021

Becknell B, Eichler TE, Beceiro S, et al. Ribonucleases 6 and 7 have antimicrobial function in the human and murine urinary tract. Kidney Int. 2015;87(1):151­161. https://doi.org/10.1038/ki.2014.268

Amatngalim GD, van Wijck Y, de Mooij­Eijk Y, et al. Basal cells contribute to innate immunity of the airway epi­ thelium through production of the antimicrobial protein RNase 7. J Immunol. 2015;194(7):3340­3350. https://doi. org/10.4049/jimmunol.1402169

Eichler TE, Becknell B, Easterling RS, et al. Insulin and the phosphatidylinositol 3­kinase signaling pathway regulate Ribonuclease 7 expression in the human urinary tract. Kidney Int. 2016;90(3):568­579. https://doi.org/10.1016/j. kint.2016.04.025

Chan CC, Moser JM, Dyer KD, et al. Genetic diversity of human RNase 8. BMC Genomics. 2012;13(1):1­10. https:// doi.org/10.1186/1471­2164­13­40

Wu L, Xu Y, Zhao H, et al. RNase T2 in inflammation and cancer: Immunological and biological views. Front Im- munol. 2020;11:1554. https://doi.org/10.3389/fimmu.2020.01554

Thorn A, Steinfeld R, Ziegenbein M, et al. Structure and activity of the only human RNase T2. Nucleic Acids Res. 2012;40(17):8733­8742. https://doi.org/10.1093/nar/gks614

Liang SL, Quirk D, Zhou A. RNase L: its biological roles and regulation. IUBMB Life. 2006;58(9):508­514. https://doi. org/10.1080/15216540600838232

D’Alessio G, Di Donato A, Parente A, et al. Seminal RNase: a unique member of the ribonuclease superfamily. Trends Biochem Sci. 1991;16:104­106

Robertson HD, Webster RE, Zinder ND. Purification and properties of ribonuclease III from Escherichia coli. J Biol Chem. 1968;243(1):82­91. https://doi.org/10.1016/S0021­9258(18)99327­0

Ardelt W, Shogen K, Darzynkiewicz Z. Onconase and amphinase, the antitumor ribonucleases from Rana pipiens oocytes. Curr Pharm Biotechnol. 2008;9(3):215­225. https://doi.org/10.2174/138920108784567245

Benito A, Ribó M, Vilanova M. On the track of antitumour ribonucleases. Mol Biosyst. 2005;1(4):294­302. https:// doi.org/10.1039/b502847g

Cheng Y, Liu P, Zheng Q, et al. Mitochondrial trafficking and processing of telomerase RNA TERC. Cell Rep. 2018;24(10):2589­2595. https://doi.org/10.1016/j.celrep.2018.08.003

Lee HH, Wang YN, Hung MC. Functional roles of the human ribonuclease A superfamily in RNA metabolism and membrane receptor biology. Mol Aspects Med. 2019;70:106­116. https://doi.org/10.1016/j.mam.2019.03.003

Vickers NJ. Animal communication: when I’m calling you, will you answer too? Curr Biol. 2017;27(14):R713­R715. https://doi.org/10.1016/j.cub.2017.05.064

Fabre O, Salehzada T, Lambert K, et al. RNase L controls terminal adipocyte differentiation, lipids storage and in­ sulin sensitivity via CHOP10 mRNA regulation. Cell Death Differ. 2012;19(9):1470­1481. https://doi.org/10.1038/ cdd.2012.23

Lee HH, Wang YN, Yang WH, et al. Human ribonuclease 1 serves as a secretory ligand of ephrin A4 receptor and induces breast tumor initiation. Nat Commun. 2021;12(1):1­18. https://doi.org/10.1038/s41467­021­23075­2

Zernecke A, Preissner KT. Extracellular ribonucleic acids (RNA) enter the stage in cardiovascular disease. Circ Res. 2016;118(3):469­479. https://doi.org/10.1161/CIRCRESAHA.115.307961

Muraille E. Redefining the immune system as a social interface for cooperative processes. PloS Pathog. 2013;9(3):e1003203. https://doi.org/10.1371/journal.ppat.1003203

Mahla RS, Reddy CM, Prasad D, et al. Sweeten PAMPs: role of sugar complexed PAMPs in innate immunity and vac­ cine biology. Front Immunol. 2013;4:248. https://doi.org/10.3389/fimmu.2013.00248

Girardello R, Baranzini N, Molteni M, et al. The medicinal leech as a valuable model for better understanding the role of a TLR4­like receptor in the inflammatory process. Cell Tissue Res. 2019;377(2):245­257. https://doi.org/10.1007/ s00441­019­03010­0

Zylbersztejn F, Byelinska I, Jeanpierre S, et al. Human myeloid differentiation by BMP4 signaling through the VDR pathway in acute myeloid leukemia. Cell Death Discov. 2024;10:325. https://doi.org/10.1038/ s41420­024­02090­4

Liu P, Huang J, Zheng Q, et al. Mammalian mitochondrial RNAs are degraded in the mitochondrial intermembrane space by RNASET2. Protein Cell. 2017;8(10):735­749. https://doi.org/10.1007/s13238­017­0448­9

Acquati F, Mortara L, De Vito A, et al. Innate immune response regulation by the human RNASET2 tumor suppres­ sor gene. Front Immunol. 2019;10:2587. https://doi.org/10.3389/fimmu.2019.02587

Baranzini N, Pulze L, Acquati F, et al. Hirudo verbana as an alternative model to dissect the relationship between innate immunity and regeneration. Invertebr Surviv J. 2020;17(1):90­98. https://doi.org/10.25431/1824­307X/isj. v0i0.90­98

Greulich W, Wagner M, Gaidt MM, et al. TLR8 is a sensor of RNase T2 degradation products. Cell. 2019;179(6):1264­ 1275. https://doi.org/10.1016/j.cell.2019.11.001

Iordanov MS, Ryabinina OP, Wong J, et al. Molecular determinants of apoptosis induced by the cytotoxic ribo­ nuclease onconase: evidence for cytotoxic mechanisms different from inhibition of protein synthesis. Cancer Res. 2000;60(7):1983­1994.

Tsai SY, Ardelt B, Hsieh TC, et al. Treatment of Jurkat acute T­lymphocytic leukemia cells by onconase (Ranpirnase) is accompanied by an altered nucleocytoplasmic distribution and reduced expression of transcription factor NF­κB. Int J Oncol. 2004;25(6):1745­1752. https://doi.org/10.3892/ijo.25.6.1745

Saxena SK, Sirdeshmukh R, Ardelt W, et al. Entry into cells and selective degradation of tRNAs by a cytotoxic mem­ ber of the RNase A family. J Biol Chem. 2002;277(17):15142­15146. https://doi.org/10.1074/jbc.M108115200

Altomare DA, Rybak SM, Pei J, et al. Onconase responsive genes in human mesothelioma cells: implications for an RNA damaging therapeutic agent. BMC Cancer. 2010;10(1):1­12. https://doi.org/10.1186/1471­2407­10­34

Qiao M, Zu LD, He XH, et al. Onconase downregulates microRNA expression through targeting microRNA precur­ sors. Cell Res. 2012;22(7):1199­1202. https://doi.org/10.1038/cr.2012.67

Kopfnagel V, Wagenknecht S, Brand L, et al. RNase 7 downregulates TH 2 cytokine production by activated human T cells. Allergy. 2017;72(11):1694­1703. https://doi.org/10.1111/all.13173

Theotoki EI, Pantazopoulou VI, Georgiou S, et al. Dicing the disease with Dicer: the implications of Dicer ribonuc­ lease in human pathologies. Int J Mol Sci. 2020;21(19):7223. https://doi.org/10.3390/ijms21197223

Song MS, Rossi JJ. Molecularmechanismsof Dicer: endonucleaseandenzymaticactivity. Biochem J. 2017;474(10):1603­ 1618. https://doi.org/10.1042/BCJ20160759

Steinfelder S, Andersen JF, Cannons JL, et al. The major component in schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega­1). J Exp Med. 2009;206(8):1681­1690. https://doi. org/10.1084/jem.20082462

Megel C, Hummel G, Lalande S, et al. Plant RNases T2, but not Dicer­like proteins, are major players of tRNA­ derived fragments biogenesis. Nucleic Acids Res. 2019;47(2):941­952. https://doi.org/10.1093/nar/gky1156

Diaz­Baena M, Galvez­Valdivieso G, Delgado­Garcia E, et al. Nuclease and ribonuclease activities in response to salt stress: identification of PvRNS3, a T2/S­like ribonuclease induced in common bean radicles by salt stress. Plant Physiol Biochem. 2020;147:235­241. https://doi.org/10.1016/j.plaphy.2019.12.016

Bielins’ka I V, Lynchak OV, Rybal’chenko TV, Hurniak OM. Hematological effects of the protein kinase inhibitor maleimide derivative in dimethylhydrazine E­induced colorectal carcinogenesis of rats. Fiziol Zh. 2014;60:40­49. https://doi.org/10.15407/fz60.04.040 (in Ukrainian).

Khabar KSA. Hallmarks of cancer and AU­rich elements. Wiley Interdiscip Rev RNA. 2017;8(1):e1368. https://doi. org/10.1002/wrna.1368

Gonsky R, Fleshner P, Deem RL, et al. Association of ribonuclease T2 gene polymorphisms with decreased expres­ sion and clinical characteristics of severity in Crohn’s disease. Gastroenterology. 2017;153(1):219­232. https://doi. org/10.1053/j.gastro.201 7.04.002

Zhu G, Xu Y, Cen X, et al. Targeting pattern­recognition receptors to discover new small molecule immune modula­ tors. Eur J Med Chem. 2018;144:82­92. https://doi.org/10.1016/j.ejmech.2017.12.026

Domachowske JB, Dyer KD, Adams AG, et al. Eosinophil cationic protein/RNase 3 is another RNase A­family ribonuclease with direct antiviral activity. Nucleic Acids Res. 1998;26(14):3358­3363. https://doi.org/10.1093/ nar/26.14.3358

Boix E, Salazar VA, Torrent M, et al. Structural determinants of the eosinophil cationic protein antimicrobial activity.

Biol Chem. 2012;393(8):801­815. https://doi.org/10.1515/hsz­2012­0160

Bystrom J, Amin K, Bishop­Bailey D. Analysing the eosinophil cationic protein­a clue to the function of the eosino­ phil granulocyte. Respir Res. 2011;12(1):1­20. https://doi.org/10.1186/1465­9921­12­10

Shamri R, Young KM, Weller PF. PI 3K, ERK, p38 MAPK and integrins regulate CCR 3­mediated secretion of mouse and human eosinophil­associated RNases. Allergy. 2013;68(7):880­889. https://doi.org/10.1111/all.12163

Becknell B, Ching C, Spencer JD. The responses of the ribonuclease A superfamily to urinary tract infection. Front Immunol. 2019;10:2786. https://doi.org/10.3389/fimmu.2019.02786

Pulido D, Arranz­Trullén J, Prats­Ejarque G, et al. Insights into the antimicrobial mechanism of action of hu­ man RNase6: structural determinants for bacterial cell agglutination and membrane permeation. Int J Mol Sci. 2016;17(4):552. https://doi.org/10.3390/ijms17040552

Harder J, Dressel S, Wittersheim M, et al. Enhanced expression and secretion of antimicrobial peptides in atop­ ic dermatitis and after superficial skin injury. J Invest Dermatol. 2010;130(5):1355­1364. https://doi.org/10.1038/ jid.2009.432

Koczera P, Martin L, Marx G, et al. The ribonuclease a superfamily in humans: canonical RNases as the buttress of in­ nate immunity. Int J Mol Sci. 2016;17(8):1278. https://doi.org/10.3390/ijms17081278

Andika IB, Kondo H, Suzuki N. Dicer functions transcriptionally and posttranscriptionally in a multilayer antiviral defense. Proc Natl Acad Sci USA. 2019;116(6):2274­2281. https://doi.org/10.1073/pnas.181240711

Rademacher F, Simanski M, Harder J. RNase 7 in cutaneous defense. Int J Mol Sci. 2016;17(4):560. https://doi. org/10.3390/ijms17040560

Kopfnagel V, Wagenknecht S, Harder J, et al. RNase 7 strongly promotes TLR9­mediated DNA sensing by human plasmacytoid dendritic cells. J Invest Dermatol. 2018;138(4):872­881. https://doi.org/10.1016/j.jid.2017.09.052

Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015;12(4):381­388.

Chen YG, Kim M V, Chen X, et al. Sensing self and foreign circular RNAs by intron identity. Mol Cell. 2017;67(2):228­ 238. https://doi.org/10.1016/j.molcel.2017.05.022

Hou J, Jiang W, Zhu L, et al. Circular RNAs and exosomes in cancer: a mysterious connection. Clin Transl Oncol. 2018;20(9):1109­1116. https://doi.org/10.1007/s12094­018­1839­y

Xu Z, Li P, Fan L, et al. The potential role of circRNA in tumor immunity regulation and immunotherapy. Front Im- munol. 2018;9:9. https://doi.org/10.3389/fimmu.2018.00009

Li P, Liu C, Yu Z, et al. New insights into regulatory T cells: exosome­and non­coding RNA­mediated regulation of homeostasis and resident Treg cells. Front Immunol. 2016;7:574. https://doi.org/10.3389/fimmu.2016.00574

Downloads

Published

19.12.2024

How to Cite

SHLYAKHOVENKO, V., SAMOYLENKO, O., VERBINENKO, A., & GANUSEVICH, I. (2024). ROLE OF RIBONUCLEASES IN THE REGULATION OF IMMUNE RESPONSE. Experimental Oncology, 46(3), 192–201. https://doi.org/10.15407/exp-oncology.2024.03.192