• L. Fishchuk State Institution “Reference-center for Molecular Diagnostic of Public Health Ministry of Ukraine”, Kyiv, Ukraine
  • O. Skavinska State Institution “Reference-center for Molecular Diagnostic of Public Health Ministry of Ukraine”, Kyiv, Ukraine
  • O. Ievseienkova Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine
  • Z. Rossokha State Institution “Reference-center for Molecular Diagnostic of Public Health Ministry of Ukraine”, Kyiv, Ukraine
  • L. Sheiko Shupyk National Healthcare University of Ukraine, Kyiv, Ukraine



methotrexate, oncology, pharmacogenomics, gene, toxicity


Today, methotrexate (MTX) is used in combination with other medicines to treat a wide range of malignancies. Despite its proven high efficacy, MTX often causes serious side effects, which may result in the need to reduce the dose of MTX or discontinue the drug altogether. This, in turn, can provoke the development of MTX resistance and cancer progression. Predicting the risk of MTX-induced toxicity is currently difficult due to the variability of pharmacokinetics and pharmacodynamics in different patients, so the scientific literature is intensively searching for potential biomarkers. Based on the data available in the current literature, we analyzed the relationship between variants in the genes encoding the key components of MTX intracellular metabolism and the MTX-induced side effects and drug response. According to the results of our work, the most studied variants are those of the SLC19A1 gene, which encodes the reduced folate carrier protein 1, and the MTHFR gene, which encodes the enzyme methylenetetrahydrofolate reductase. Studies of the effect of methylation of the promoter regions of genes on the therapeutic effect of MTX are also very promising. In conclusion, the study of molecular genetic markers of MTX toxicity is extremely relevant and necessary because it can help to avoid the effect of multidrug resistance and improve the quality of life and survival of patients.


Farber S, Diamond LK. Temporaryremissionsinacuteleukemiainchildrenproducedbyfolicacidantagonist, 4-am- inopteroyl-glutamic acid. N Engl J Med. 1948;238(23):787-793.

Koźmiński P, Halik PK, Chesori R, Gniazdowska E. Overview of dual-acting drug methotrexate in different neu- rological diseases, autoimmune pathologies and cancers. Int J Mol Sci. 2020;21(10):3483.

Wang W, Zhou H, Liu L. Side effects of methotrexate therapy for rheumatoid arthritis: A systematic review.

Eur J Med Chem. 2018;158:502-516.

Bedoui Y, Guillot X, Sélambarom J, et al. Methotrexate an old drug with new tricks. Int J Mol Sci. 2019;20(20):5023.

Hamed KM, Dighriri IM, Baomar AF, et al. Overview of methotrexate toxicity: a comprehensive literature review.

Cureus. 2022;14(9):e29518.

Dang Y, Zhou D, Du X. et al. Molecular mechanism of substrate recognition by folate transporter SLC19A1. Cell Discov. 2022;8:141.

Mauritz R, Peters GJ, Kathmann I, et al. Dynamics of antifolate transport via the reduced folate carrier and the membrane folate receptor in murine leukaemia cells in vitro and in vivo. Cancer Chemother Pharmacol. 2008;62(6):937-948.

Cwiklinska M, Czogala M, Kwiecinska K, et al. Polymorphisms of SLC19A1 80 G>A, MTHFR 677 C>T, and tandem TS repeats influence pharmacokinetics, acute liver toxicity, and vomiting in children with acute lym- phoblastic leukemia treated with high doses of methotrexate. Front Pediatr. 2020;8:307.

Esmaili MA, Kazemi A, Faranoush M, et al. Polymorphisms within methotrexate pathway genes: Relationship be- tween plasma methotrexate levels, toxicity experienced and outcome in pediatric acute lymphoblastic leukemia. Iran J Basic Med Sci. 2020;23(6):800-809.

Ramalingam R, Kaur H, Scott JX, et al. Evaluation of cytogenetic and molecular markers with MTX-mediated toxicity in pediatric acute lymphoblastic leukemia patients. Cancer Chemother Pharmacol. 2022;89(3):393-400.

Jabeen S, Holmboe L, Alnæs GI, et al. Impact of genetic variants of RFC1, DHFR and MTHFR in osteosarcoma patients treated with high-dose methotrexate. Pharmacogenomics J. 2015;15(5):385-390.

Wu Y, Fang F, Wang Z, et al. The influence of recipient SLCO1B1 rs2291075 polymorphism on tacrolim- us dose-corrected trough concentration in the early period after liver transplantation. Eur J Clin Pharmacol. 2021;77(6):859-867.

Ramsey LB, Bruun GH, Yang W, et al. Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res. 2012;22(1):1-8.

Ramsey LB, Panetta JC, Smith C, et al. Genome-wide study of methotrexate clearance replicates SLCO1B1. Blood. 2013;121(6):898-904.

Hao Q, Song Y, Fang Q, et al. Effects of genetic polymorphisms on methotrexate levels and toxicity in Chinese patients with acute lymphoblastic leukemia. Blood Sci. 2022;5(1):32-38. doi: 10.1097/BS9.0000000000000142

Eldem İ, Yavuz D, Cumaoğullari Ö, et al. SLCO1B1 Polymorphisms are associated with drug intolerance in child- hood leukemia maintenance therapy. J Pediatr Hematol Oncol. 2018;40(5):e289-e294.

Yang L, Wu H, Gelder TV, et al. SLCO1B1 rs4149056 genetic polymorphism predicting methotrexate toxicity in Chinese patients with non-Hodgkin lymphoma. Pharmacogenomics. 2017;18(17):1557-1562. https://doi. org/10.2217/pgs-2017-0110

Yang FF, Xue TL, Gao C, et al. Effects of SLCO1B1 on elimination and toxicities of high-dose methotrexate in pediatric acute lymphoblastic leukemia. Pharmacogenomics. 2022;23(15):821-834.

Liu SG, Gao C, Zhang RD, et al. Polymorphisms in methotrexate transporters and their relationship to plasma methotrexate levels, toxicity of high-dose methotrexate, and outcome of pediatric acute lymphoblastic leukemia. Oncotarget. 2017;8(23):37761-37772.

Razali RH, Noorizhab MNF, Jamari H, et al. Association of ABCC2 with levels and toxicity of methotrexate in Malaysian childhood acute lymphoblastic leukemia (ALL). Pediatr Hematol Oncol. 2020;37(3):185-197.

Koehn LM. ABC Transporters: An Overview. In: The ADME Encyclopedia. Springer, Cham; 2021:1-10.

Gupta P, Gao HL, Ashar YV, et al. Ciprofloxacin enhances the chemosensitivity of cancer cells to ABCB1 sub- strates. Int J Mol Sci. 2019;20(2):268.

Levkovich NM, Gorovenko NG. Genetic structure characteristics of polymorphic variants xenobiotics detoxi- fication system gene in Ukrainian population. Faktori Eksp Evol Organizmiv. 2014;14:208-211 (In Ukrainian).

Han J, Liu L, Meng L, et al. Effect of polymorphisms of ABCB1 and MTHFR on methotrexate-related toxicities in adults with hematological malignancies. Front Oncol. 2021;11:759805.

Ebid AIM, Hossam A, El Gammal MM, et al. High dose methotrexate in adult Egyptian patients with hema- tological malignancies: impact of ABCB1 3435C > T rs1045642 and MTHFR 677C > T rs1801133 polymor- phisms on toxicities and delayed elimination. J Chemother. 2022;34(6):381-390. 9X.2021.2009723

Zhou Y, He H, Ding L, et al. Effects of gene polymorphisms on delayed MTX clearance, toxicity, and metabolomic changes after HD-MTX treatment in children with acute lymphoblastic leukemia. Eur J Pediatr. Published online Oct 18, 2023.

Gong Y, Luo L, Wang L, et al. Association of MTHFR and ABCB1 polymorphisms with MTX-induced mucositis in Chinese paediatric patients with acute lymphoblastic leukaemia, lymphoma or osteosarcoma — A retrospec- tive cohort study. J Clin Pharm Ther. 2021;46(6):1557-1563.

Tjong E, Dimri M, Mohiuddin SS. Biochemistry, Tetrahydrofolate. In: StatPearls. Treasure Island (FL): StatPearls Publishing; Published online June 26 2023.

Ceppi F, Gagné V, Douyon L, et al. DNA variants in DHFR gene and response to treatment in children with child- hood B ALL: revisited in AIEOP-BFM protocol. Pharmacogenomics. 2018;19(2):105-112.

Giletti A, Vital M, Lorenzo M, et al. Methotrexate pharmacogenetics in Uruguayan adults with hematological malignant diseases. Eur J Pharm Sci. 2017;109:480-485.

Gervasini G, de Murillo SG, Jiménez M, et al. Dihydrofolate reductase genetic polymorphisms affect methotrex- ate dose requirements in pediatric patients with acute lymphoblastic leukemia on maintenance therapy. J Pediatr Hematol Oncol. 2017;39(8):589-595.

Tulstrup M, Moriyama T, Jiang C, et al. Effects of germline DHFR and FPGS variants on methotrexate metabo- lism and relapse of leukemia. Blood. 2020;136(10):1161-1168.

Lima Á, Seabra V, Bernardes M, et al. Role of Key TYMS polymorphisms on methotrexate therapeutic outcome in Portuguese rheumatoid arthritis patients. PLOS ONE. 2014;9(10):e108165. pone.0108165

Liu J, Schmitz JC, Lin X, et al. Thymidylate synthase as a translational regulator of cellular gene expression. Bio- chim Biophys Acta. 2002;1587(2-3):174-182.

Zhao Q, Cui Y, Zeng C, et al. Association between SNPs and hepatotoxicity in patients with primary central ner- vous system lymphoma on high-dose methotrexate therapy. J Pharm Pharmacol. 2021;73(11):1480-1490.

Oosterom N, Berrevoets M, den Hoed MAH, et al. The role of genetic polymorphisms in the thymidylate syn- thase (TYMS) gene in methotrexate-induced oral mucositis in children with acute lymphoblastic leukemia. Phar- macogenet Genomics. 2018;28(10):223-229.

Wizrah MSI, Chua SMH, Luo Z, et al. AICAR transformylase/IMP cyclohydrolase (ATIC) is essential for de novo purine biosynthesis and infection by Cryptococcus neoformans. J Biol Chem. 2022;298(10):102453. https://doi. org/10.1016/j.jbc.2022.102453

Tarnowski M, Tkacz M, Piotrowska K, et al. Differential effect of adenosine on rhabdomyosarcoma migration and proliferation. Arch Med Sci. 2018;16(2):414-427.

Park JA, Shin HY. ATIC gene polymorphism and histologic response to chemotherapy in pediatric osteosarcoma.

J Pediatr Hematol Oncol. 2017;39(5):e270-e274.

Yeroshkina K, Rossokha Z, Fishchuk L, Gorovenko N. Betaine consumption as a new clinical approach to treat- ment and prophylaxis of folate-related pathologies. Nutr Rev. 2023;81(6):716-726.

Karschnia P, Kurz SC, Brastianos PK, et al. Association of MTHFR polymorphisms with leukoencepha- lopathy risk in patients with primary CNS lymphoma treated with methotrexate-based regimens. Neurology. 2023;101(17):e1741-e1746.

Tan Y, Kong Q, Li X, et al. Relationship between methylenetetrahydrofolate reductase gene polymorphisms and methotrexate drug metabolism and toxicity. Transl Pediatr. 2023;12(1):31-45.

Yang FY, Xu LH, Wang J, et al. [Relationship between MTHFR gene polymorphism(C677T) and adverse reactions of high-dose methotrexate in pediatric patients with acute lymphoblastic leukemia]. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2023;31(4):967-972.

Wang SM, Li M, Wu WS, et al. Methylation analysis of the SLC19A1 promoter region in Chinese children with acute lymphoblastic leukaemia. J Clin Pharm Ther. 2020;45(4):646-651.

Huang X, Hao Q, Fang Q, et al. Correlation between methylation level of the SLC19A1 promoter region and methotrexate metabolism in adult acute lymphoblastic leukemia. Pharmacogenomics. 2023;24(5):261-268.

Stefansson OA, Hilmarsdottir H, Olafsdottir K, et al. BRCA1 promoter methylation status in 1031 primary breast cancers predicts favorable outcomes following chemotherapy. JNCI Cancer Spectr. 2019;4(2):pkz100.

Lobanova OE, Rossokha ZI, Medvedieva NL, et al. Prevalence of BRCA1 and BRCA2 genes promoter hypermeth- ylation in breast cancer tissue. Exp Oncol. 2021;43(1):56-60.

Lobanova O, Medvedieva N, Fishchuk L, et al. Methylation of promoter region of BRCA1 gene versus pathogenic variants of gene: risk factor or clinical marker of breast cancer. Breast Cancer Res Treat. 2022;196(3):505-515.




How to Cite

Fishchuk, L., Skavinska, O., Ievseienkova, O., Rossokha, Z., & Sheiko, L. (2024). GENETIC PREDICTORS OF TOXIC EFFECTS OF METHOTREXATE IN CANCER PATIENTS. Experimental Oncology, 45(4), 399–408.

Most read articles by the same author(s)