EFFECTS OF DEXTRAN-GRAFT-POLYACRYLAMIDE/ZnO NANOPARTICLES ON PROSTATE CANCER CELL LINES IN VITRO

Authors

  • P.A. Virych R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology
  • T.V. Zadvornyi R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology
  • T.V. Borikun R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology
  • O.O. Lykhova R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology
  • V.A. Chumachenko Taras Shevchenko National University of Kyiv
  • P.A. Virych Taras Shevchenko National University of Kyiv
  • V.A. Pavlenko Taras Shevchenko National University of Kyiv
  • N.V. Kutsevol Taras Shevchenko National University of Kyiv
  • N.Yu. Lukianova R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology

DOI:

https://doi.org/10.32471/exp-oncology.2312-8852.vol-44-no-3.18452

Keywords:

apoptosis, nanoparticles, prostate cancer, zinc oxide

Abstract

Background: The combination of zinc oxide (ZnO) nanoparticles (NPs) with carriers enhances the anticancer effect of nanocomposites. Aim: To explore the mechanisms of cytotoxic action of dextran-graft-polyacrylamide (D-g-PAA/ZnO) NPs against prostate cancers cell lines in vitro. Materials and Methods: Dextran-polyacrylamide was used as a matrix for the synthesis of ZnO NPs. Prostate cancer cells LNCaP, DU-145 and PC-3 were treated with D-g-PAA/ZnO NPs. The expression of Bax, Bcl-2, p53 and Ki-67 was studied using immunocytochemical analysis. Cytomorphological changes in cells were detected after their incubation with nanocomposites for 24 h. Results: The treatment with D-g-PAA/ZnO NPs caused the increase in the Bax and p53 and the decrease in Ki-67 and Bcl-2 expression. Morphological changes associated with apoptosis were registered: decrease in cell size, appearance of cytoplasmic vacuolation, condensation of chromatin, blebbing. Conclusions: Treatment with D-g-PAA/ZnO nanocomposite led to the initiation of apoptotic cell death in prostate cancer cells in vitro.

References

Rahim MA, Jan N, Khan S, et al. Recent advancements in stimuli responsive drug delivery platforms for active and passive cancer targeting. Cancers (Basel) 2021; 13: 670. https://doi.org/10.3390/cancers13040670

Xu JJ, Zhang WC, Guo YW, et al. Metal nanoparticles as a promising technology in targeted cancer treatment. Drug Deliv 2022; 29: 664–78. https://doi.org/10.1080/10717544.2022.2039804

Li S, Zhang H, Chen K, et al. Application of chitosan/alginate nanoparticle in oral drug delivery systems: prospects and challenges. Drug Deliv 2022; 29: 1142–9. https://doi.org/10.1080/10717544.2022.2058646

Anjum S, Hashim M, Malik SA, et al. Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers (Basel) 2021; 13: 4570. https://doi.org/10.3390/cancers13184570

Wiesmann N, Tremel W, Brieger J. Zinc oxide nanoparticles for therapeutic purposes in cancer medicine. J Mater Chem B 2020; 8: 4973–89. https://doi.org/10.1039/d0tb00739k

Islam F, Shohag S, Uddin MJ, et al. Exploring the journey of zinc oxide nanoparticles (ZnO-NPs) toward biomedical applications. Materials (Basel) 2022; 15: 2160. https://doi.org/10.3390/ma15062160

Skrajnowska D, Bobrowska-Korczak B. Role of zinc in immune system and anti-cancer defense mechanisms. Nutrients 2019; 11: 2273. https://doi.org/10.3390/nu11102273

Singh TA, Das J, Sil PC. Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Adv Colloid Interface Sci 2020; 286: 102317. https://doi.org/10.1016/j.cis.2020.102317

Li D, Stovall DB, Wang W, et al. Advances of zinc signaling studies in prostate cancer. Int J Mol Sci 2020; 21: 667. https://doi.org/10.3390/ijms21020667

Prasad RR, Raina K, Mishra N, et al. Stage-specific differential expression of zinc transporter SLC30A and SLC39A family proteins during prostate tumorigenesis. Mol Carcinog 2022; 61: 454–71. https://doi.org/10.1002/mc.23382

Hu C, Du W. Zinc oxide nanoparticles (ZnO NPs) combined with cisplatin and gemcitabine inhibits tumor activity of NSCLC cells. Aging (Albany, NY) 2020; 12: 25767–77. https://doi.org/10.18632/aging.104187

Wang Y, Zhang Y, Guo Y, et al. Synthesis of Zinc oxide nanoparticles from Marsdenia tenacissima inhibits the cell proliferation and induces apoptosis in laryngeal cancer cells (Hep-2). J Photochem Photobiol B 2019; 201: 111624. https://doi.org/10.1016/j.jphotobiol.2019.111624

Ruenraroengsak P, Kiryushko D, Theodorou IG, et al. Frizzled-7-targeted delivery of zinc oxide nanoparticles to drug-resistant breast cancer cells. Nanoscale 2019; 11: 12858–70. https://doi.org/10.1039/c9nr01277j

Liu J, Ma X, Jin S, et al. Zinc oxide nanoparticles as adjuvant to facilitate doxorubicin intracellular accumulation and visualize pH-responsive release for overcoming drug resistance. Mol Pharm 2016; 13: 1723–30. https://doi.org/10.1021/acs.molpharmaceut.6b00311

Wang J, Lee JS, Kim D, et al. Exploration of zinc oxide nanoparticles as a multitarget and multifunctional anticancer nanomedicine. ACS Appl Mater Interfaces 2017; 9: 39971–84. https://doi.org/10.1021/acsami.7b11219

Chernykh M, Zavalny D, Sokolova V, et al. New water-soluble thermosensitive star-like copolymer as a promising carrier of the chemotherapeutic drug doxorubicin. Materials (Basel) 2021; 14: 3517. https://doi.org/10.3390/ma14133517

Viswanatha R, Sapra S, Satpati B, et al. Understanding the quantum size effects in ZnO nanocrystals. J Mat Chem 2004; 14: 661–8. https://doi.org/10.1039/B310404D

Vega-Avila E, Pugsley MK. An overview of colorimetric assay methods used to assess survival or proliferation of mammalian cells. Proc West Pharmacol Soc 2011; 54: 10-4.

Squier MK, Cohen JJ. Standard quantitative assays for apoptosis. Mol Biotech 2001; 19: 305–12. https://doi.org/10.1385/MB:19:3:305

McClelland RA, Wilson D, Leake R, et al. A multicentre study into the reliability of steroid receptor immunocytochemical assay quantification. British Quality Control Group. Eur J Cancer 1991; 27: 711–5. https://doi.org/10.1016/0277-5379(91)90171-9

Zadvornyi TV, Lukianova NY, Borikun TV, et al. Effects of exogenous lactoferrin on phenotypic profile and invasiveness of human prostate cancer cells (DU145 and LNCaP) in vitro. Exp Oncol 2018; 40: 184–9. https://doi.org/10.31768/2312-8852.2018.40(3):184-189

Yang R, Wu R, Mei J, et al. Zinc oxide nanoparticles promotes liver cancer cell apoptosis through inducing autophagy and promoting p53. Eur Rev Med Pharmacol Sci 2021; 25: 1557–63. https://doi.org/10.26355/eurrev_202102_24864

Khorsandi L, Farasat M. Zinc oxide nanoparticles enhance expression of maspin in human breast cancer cells. Environ Sci Pollut Res Int 2020; 27: 38300–10. https://doi.org/10.1007/s11356-020-09986-5

Pouresmaeil V, Haghighi S, Raeisalsadati AS, et al. The anti-breast cancer effects of green-synthesized zinc oxide nanoparticles using carob extracts. Anticancer Agents Med Chem 2021; 21: 316–26. https://doi.org/10.2174/1871520620666200721132522

Duan X, Liao Y, Liu T, et al. Zinc oxide nanoparticles synthesized from Cardiospermum halicacabum and its anticancer activity in human melanoma cells (A375) through the modulation of apoptosis pathway. J Photochem Photobiol B. 2020; 202: 111718. https://doi.org/10.1016/j.jphotobiol.2019.1117185

Berehu HM, S A, Khan MI, et al. Cytotoxic potential of biogenic zinc oxide nanoparticles synthesized from Swertia chirayita leaf extract on colorectal cancer cells. Front Bioeng Biotechnol 2021; 9: 788527. https://doi.org/10.3389/fbioe.2021.788527

Scherzad A, Meyer T, Kleinsasser N, et al. Molecular mechanisms of zinc oxide nanoparticle-induced genotoxicity short. Materials (Basel) 2017; 10: 1427. https://doi.org/10.3390/ma10121427

Hackenberg S, Scherzed A, Technau A, et al. Cytotoxic, genotoxic and proinflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro. Toxicol in vitro 2011; 25: 657–63. https://doi.org/10.1016/j.tiv.2011.01.003

Valdiglesias V, Costa C, Kilic G, et al. Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles. Environ Int 2013; 55: 92–100. https://doi.org/10.1016/j.envint.2013.02.013

Kwon JY, Lee SY, Koedrith P, et al. Lack of genotoxic potential of ZnO nanoparticles in in vitro and in vivo tests. Mutat Res Genet Toxicol Environ Mutagen 2014; 761: 1–9. https://doi.org/10.1016/j.mrgentox.2014.01.005

Mundekkad D, Cho W. Nanoparticles in clinical translation for cancer therapy. Int J Mol Sci 2022; 23: 1685. https://doi.org/10.3390/ijms23031685

Bisht G, Rayamajhi S. ZnO nanoparticles: a promising anticancer agent. Nanobiomedicine (Rij) 2016; 3: 9. https://doi.org/10.5772/63437

Sauer AK, Vela H, Vela G, et al. Zinc deficiency in men over 50 and its implications in prostate disorders. Front Oncol 2020; 10: 1293. https://doi.org/10.3389/fonc.2020.01293

Downloads

Published

26.05.2023

How to Cite

Virych, P., Zadvornyi, T., Borikun, T., Lykhova, O., Chumachenko, V., Virych, P., … Lukianova, N. (2023). EFFECTS OF DEXTRAN-GRAFT-POLYACRYLAMIDE/ZnO NANOPARTICLES ON PROSTATE CANCER CELL LINES IN VITRO. Experimental Oncology, 44(3), 217–221. https://doi.org/10.32471/exp-oncology.2312-8852.vol-44-no-3.18452

Issue

Section

Original contributions

Most read articles by the same author(s)

1 2 > >>