Peculiarities of epithelial-mesenchymal transition in endometrial carcinomas
DOI:
https://doi.org/10.32471/exp-oncology.2312-8852.vol-43-no-4.16982Keywords:
endometrioid endometrial carcinoma, epithelial-mesenchymal transition, Snail, transcription factors, Twist, ZEBAbstract
Summary. Epithelial-mesenchymal transition is an important component of tumor progression, due to which the cells of malignant neoplasms acquire invasive and migratory properties. Analysis of the literature and our own data show that the activation of proteins involved in epithelial-mesenchymal transition crucially affects the progression of endometrioid carcinoma of the endometrium and the significant variability of their expression could determine the clinical and morphological heterogeneity of this cancer. The most aggressive endometrioid carcinomas of the endometrium are characterized by a hybrid epithelial-mesenchymal phenotype, which is often associated with a collective type of invasion of endometrial tumor cells into the myometrium.
References
Fedorenko ZP, Mikhailovich YU, Gulak LO, et al. Cancer in Ukraine, 2019-2020. Morbidity, mortality, indicators of oncology service activity. Bul Nat Registry of Ukraine 2021; 22: 82 p. http://www.ncru.inf.ua
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics 2021. CA. Cancer J Clin 2021; 71: 7–33. https://doi.org/10.3322/caac.21654
Nyen TV, Moiola CP, Colas E, et al. Modeling endometrial cancer: past, present, and future. Іnt J Mol Sci 2018; 19: 2348. https://doi.org/10.3390/ijms19082348
Francou A, Anderson KV. The epithelial-to-mesenchymal transition in development and cancer. Annu Rev Cancer Biol 2020; 4: 197–220. https://doi.org/10.1146/annurev-cancerbio-030518-055425
Qin J-H, Wang L, Li Q-L, et al. Epithelial-mesenchymal transition as strategic microenvironment mimicry for cancer cell survival and іmmune escape? Genes Dis 2017; 4: 16–8. https://doi.org/10.1016/j.gendis.2016.10.001
Jolly MK, Ware KE, Gilja S, et al. EMT and MET: Ne¬cessary or permissive for metastasis? Mol Oncol 2017; 11: 755–69. https://doi.org/10.1002/1878-0261.12083
Williams ED, Gao D, Redfern A, Thompson EW. Controversies around epithelial-mesenchymal plasticity in cancer metastasis. Nat Rev Cancer 2019; 19: 716–32. https://doi.org/10.1038/s41568-019-0213-x
Bhatia S, Wang P, Toh A, Thompson EW. New insights into the role of phenotypic plasticity and EMT in driving cancer progression. Front Mol Biosci 2020; 7: 71.https://doi.org/10.3389/fmolb.2020.00071
Chaffer CL, Juan BPS, Lim E, Weinberg RA. EMT, cell plasticity and metastasis. Cancer Metastasis Rev 2016; 35: 645–54. https://doi.org/10.1007/s10555-016-9648-7
Liao T-T, Yang M-H. Hybrid epithelial/mesenchymal state in cancer metastasis: clinical significance and regulatory mechanisms. Cells 2020; 9: 623. https://doi.org/10.3390/cell9030623
Tolibova GKh, Tral TG, Ailamazyan EK, et al. Molecular mechanisms of cyclic transformation of the endometrium. J Obstetrics Women’s Dis 2019; 68: 5–12:https://doi.org/10.17816/JOWD6815-12 (in Russian)
Sanderson PA, Critchley HO, Williams AR, et al. New concepts for an old problem: The diagnosis of endometrial hyperplasia. Hum Reprod Update 2017; 23: 232–54. https://doi.org/10.1093/humupd/dmw042
Chiu H-C, Li C-J, Yiang G-T, et al. Epithelial to mesenchymal transition and cell biology of molecular regulation in endometrial carcinogenesis. J Clin Med 2019; 8: 439. https://doi.org/10.3390/jcm8040439
Buchynska LG, Borykun TV, Iurchenko NP, et al. Еxpression of microRNA in tumor cells of endmetrioid carcinoma of endometrium. Exp Oncol 2020; 42: 289–94. https://doi.org/10.32471/exp-oncology.2312-8852
Škovierová H, Okajčeková T, Strnádel J, et al. Molecular regulation of epithelial to mesenchymal transition in tumorigenesis (Review). Int J Mol Med 2018; 41: 1187–200. https://doi.org/10.3892/ijmm.2017.3320
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15: 178–96. https://doi.org/10.1038/nrm3758
Ribatti D, Tamma R, Annese T. Epithelial-mesenchymal transition in cancer: a historical overview. Transl Oncol 2020; 13: 100773. https://doi.org/10.1016/j.tranon.2020.100773
Kang E, Seo J, Yoon H, Cho S. The post-translational regulation of epithelial–mesenchymal transition-inducing transcription factors in cancer metastasis. Int J Mol Sci 2021: 22: 3591.https://doi.org/10.3390/ijms22073591
Huang L, Jin Y, Feng S, et al. Role of Wnt/β-catenin, Wnt/c-Jun N-terminal kinase and Wnt/Ca2+ pathways in cisplatin-induced chemoresistance in ovarian cancer. Exp Ther Med 2016; 12: 3851–8. https://doi.org/10.3892/etm.2016.3885
Makker A, Goel MM. Tumor progression, metastasis, and modulators of epithelial–mesenchymal transition endometrioid endometrial carcinoma: an update. Endocr Relat Cancer 2016; 23: 85–111. https://doi.org/10.1530/ERC-15-0218
McMellen A, Woodruff ER, Corr BR, et al. Wnt signaling in gynecologic malignancies. J Mol Sci 2020; 21: 4272. https://doi.org/10.3390/ijms21124272
Goad J, Ko YA, Kumar M, et al. Oestrogen fuels the growth of endometrial hyperplastic lesions initiated by overactive Wnt/β-catenin signalling. Carcinogenesis 2018; 39: 1105–16. https://doi.org/10.1093/carcin/bgy079
Kasoha M, Dernektsi C, Seibold A, et al. Crosstalk of estrogen receptors and Wnt/β-catenin signaling in endometrial cancer. Cancer Res Clin Oncol 2020; 146: 315–27. https://doi.org/10.1007/s00432-019-03114-8
Wang Y, Hanifi-Moghaddam P, Hanekamp EE, et al. Progesterone inhibition of Wnt/β-catenin signaling in normal endometrium and endometrial cancer. Clin Cancer Res 2009; 15: 5784–93. https://doi.org/10.1158/1078-0432.CCR-09-0814
Ahmadi A, Najafi M, Farhood B, Mortezaee K. Transforming growth factor β signalling: Tumorigenesis and targeting for cancer therapy. J Cell Physiol 2019; 234: 12173–87. https://doi.org/10.1002/jcp.27955
Derynck R, Muthusamy BP, Saeteurn KY. Signaling pathway cooperation in TGF-β-induced epithelial–mesenchymal transition. Curr Оpin Сell Вiol 2014; 31: 56–66. https://doi.org/10.1016/j.ceb.2014.09.001
Bokhari AA, Lee LR, Raboteau D, et al. Progeste¬rone inhibits endometrial cancer invasiveness by inhibiting the TGF-β pathway. Cancer Prev Res 2014; 7: 1045–55. https://doi.org/10.1158/1940-6207.CAPR-14-0054
Paucarmayta A, Taitz H, Casablanca Y, et al. TGF-β signaling proteins and CYP24A1 may serve as surrogate markers for progesterone calcitriol treatment in ovarian and endometrial cancers of different histological types. Transl Cancer Res 2019; 8: 1423–37. doi: org/10.21037/tcr.2019.07.36
Fatima I, Barman S, Rai R, et al. Targeting Wnt signaling in endometrial cancer. Cancers (Basel) 2021; 13: 2351.https://doi.org/10.3390/cancers13102351
Kurnit KC, Draisey A, Kazen RC, et al. Loss of CD73 shifts transforming growth factor-β1 (TGF-β1) from tumor suppressor to promoter in endometrial cancer. Cancer Let 2021; 505: 75–86. https://doi.org/10.1016/j.canlet.2021.01.030
Sahoo SS, Zhang XD, Hondermarck H, Tanwar PS. The emerging role of the microenvironment in endometrial cancer, Cancers (Basel) 2018; 10: 408. https://doi.org/10.3390/cancers10110408
Subramaniam KS, Omar IS, Kwong SC, et al. Cancer associated fibroblasts promote endometrial cancer growth via activation of interleukin-6/STAT-3/c-Myc pathway. Am J Cancer Res 2016; 6: 200–13: http://www.ajcr.us/ISSN:2156-6976/ajcr0021359
Chen Y, Song Y, Du W, et al. Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci 2019; 26: 78. https://doi.org/10.1186/s12929-019-0568-z
Li M, Xin X, Wu T, et al. Stromal cells of endometrial carcinoma promotes proliferation of epithelial cells through the HGF/c-Met/Akt signaling pathway. Tumour Biol 2015; 36: 6239–48. https://doi.org/10.1007/s13277-015-3309-2
Buchynska LG, Movchan OM, Iurchenko NP. Expression of chemokine receptor CXCR4 in tumor cells and content of CXCL12+-fibroblasts in endometrioid carcinoma of endometrium. Exp Oncol 2021; 43: 135–41. https://doi.org/10.32471/exp-oncology.2312-8852.vol-43-no-2.16240
Yoriki K, Mori T, Kokabu T, et al. Estrogen-related receptor alpha induces epithelial-mesenchymal transition through cancer-stromal interactions in endometrial cancer. Sci Rep 2019; 9: 6697.https://doi.org/10.1038/s41598-019-43261-z
Chen H-Y, Chiang Y-F, Huang J-S, et al. Isoliquiritigenin reverses epithelial-mesenchymal transition through modulation of the TGF-β/Smad signaling pathway in endometrial cancer. Cancers (Basel) 2021; 13: 1236.https://doi.org/10.3390/cancers13061236
Romeo E, Caserta CA, Rumio C, Marcucci F. The vicious cross-talk between tumor cells with an EMT phenotype and cells of the immune system. Cells 2019; 8: 460. https://doi.org/10.3390/cells8050460
Dhanasekaran R, Baylot V, Kim M, et al. MYC and Twist1 cooperate to drive metastasis by eliciting crosstalk between cancer and innate immunity. Cancer Biol 2020; 14: 202. https://doi.org/10.7554/eLife.50731
Nesina I, Iurchenko N, Nespriadko S, Buchynska L. Twist expression and content of tumour-associated macrophages in endometrial carcinoma. Oncol Clin Pract 2021; 17: 139–47. https://doi.org/10.5603/OCP.2021.0026
Abba ML, Patil N, Leupold JH, Allgayer H. MicroRNA regulation of epithelial to mesenchymal transition. J Clin Med 2016; 5: 8. https://doi.org/10.3390/jcm5010008
Zaravinos A. The regulatory role of microRNAs in EMT and cancer. J Оncol 2015; 2015: 865816. https://doi.org/10.1155/2015/865816
Deng J, Wang W, Yu G, Mа X. MicroRNA-195 inhibits epithelial-mesenchymal transition by targeting G protein-coupled estrogen receptor 1 in endometrial carcinoma. Mol Med Reports 2019; 20: 4023-32. https://doi.org/10.3892/mmr.2019.10652
Gugnoni M, Ciarrocchi A. Long noncoding RNA and epithelial mesenchymal transition in cancer. J Mol Sci 2019; 20: 1924. https://doi.org/10.3390/ijms20081924
Landeros N, Santoro PM, Carrasco-Avino G, Corvalan AH. Competing endogenous RNA networks in the epithelial to mesenchymal transition in diffuse-type of gastric cancer. Cancers (Basel) 2020; 12: 2741. https://doi.org/10.3390/cancers12102741
Liu W, Zhang B, Xu N, et al. miR-326 regulates EMT and metastasis of endometrial cancer through targeting TWIST1. Eur Rev Med Pharm Sci 2017; 21: 3787–93.
Buchynska LG, Borykun TV, Iurchenko NP, et al. Еxpression of microRNA in tumor cells of endmetrioid carcinoma of endometrium. Exp Oncol 2020; 42: 289–94. https://doi.org/10.32471/exp-oncology.2312-8852
Donkers H, Bekkers R, Galaal K. Diagnostic value of microRNA panel in endometrial cancer: A systematic review. Oncotarget 2020; 11: 2010–23. https://doi.org/10.18632/oncotarget.27601
Piergentili R, Zaami S, Cavaliere AF, et al. Non-coding RNAs as prognostic markers for endometrial cancer. Int J Mol Sci 2021; 22: 3151.https://doi.org/10.3390/ijms2206315
Serrano-Gomez SJ, Maziveyi M, Alahari SK. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer 2016; 15: 18. HTTPS://DOI.ORG/10.1186/s12943-016-0502
Dave N, Guaita-Esteruelas S, Gutarra S, et al Functional cooperation between Snail1 and twist in the regulation of ZEB1 expression during epithelial to mesenchymal transition. J Biol Chem 2011; 286: 12024–32. https://doi.org/10.1074/jbc.M110.168625
Xu R, Won J-Y, Kim C-H, et al. Roles of the рhosphorylation of transcriptional factors in epithelial-mesenchymal transition. J Oncol 2019; ID: 5810465:https://doi.org/10.1155/2019/5810465
Lin Y, Wang Y, Shi Q, et al. Stabilization of the transcription factors Slug and Twist by the deubiquitinase Dub3 is a key requirement for tumor metastasis. Oncotarget 2017; 8: 75127–40: https://doi.org/10.18632/oncotarget.20561
Sreekumar R, Al-Saihati H, Emaduddin M, et al. The ZEB2-dependent EMT transcriptional programme drives therapy resistance by activating nucleotide excision repair genes ERCC1 and ERCC4 in colorectal cancer. Mol Oncol 2021; 15: 2065–83. https://doi.org/10.1002/1878-0261.12965
Tanaka Y, Terai Y, Kawaguchi H, et al. Prognostic impact of EMT (epithelial-mesenchymal-transition)-related protein expression in endometrial cancer. Cancer Biol Ther 2013; 14: 13–9. https://doi.org/10.4161/cbt.22625
Abouhashem NS, Ibrahim DA, Mohamed AM. Prognostic implications of epithelial to mesenchymal transition proteins (E-cadherin, Snail) and hypoxia inducible factor endometrioid endometrial carcinoma. Ann Diagn Pathol 2016; 22: 1–11. https://doi.org/10.1016/j.anndiagpath.2016.01.004
Xie X, Zheng X, Wang J, Chen L. Clinical significance of Twist, E-cadherin, and N-cadherin protein expression in endometrioid adenocarcinoma. J Can Res Ther 2017; 13: 817–22.https://doi.org/10.1155/2019/5810465
Feng Z, Gan H, Cai Z, et al. Aberrant expression of hypoxia-inducible factor 1α, TWIST and E-cadherin is associated with aggressive tumor phenotypes in endometrioid endometrial carcinoma. Jpn J Clin Oncol 2013; 43: 396–403. https://doi.org/10.1093/jjco/hys237
Senol S, Sayar I, Ceyran AB, et al. Stromal clues in endometrial carcinoma: loss of expression of β-catenin, epithelial-mesenchymal transition regulators, and estrogen-progesterone receptor. Int J Gynecol Pathol 2016; 35: 238–48. doi:10:1097/PGP:0000000000000233
Sadłecki P, Jóźwicki J, Antosik P, Walentowicz-Sadłecka M. Expression of selected epithelial-mesenchymal transition transcription factors in endometrial cancer. Biomed Res Intern 2020; 2020: 4584250.https://doi.org/10.1155/2020/4584250
Krögera C, Afeyana A, Mraz J, et al. Acquisition of a hybrid E/M state is essential fortumorigenicity of basal breast cancer cells. PNAS 2019; 116: 7353–62. doi/10.1073/pnas.1907473116
Roberta R-M, Emina B, Danijela V-M, et al. The immunohistochemical pattern of epithelial-mesenchymal transition markers in endometrial carcinoma. Appl IHC Mol Morph 2020; 28: 339–46. https://doi.org/10.1097/PAI.0000000000000754
Buchynska LG, Naleskina LА, Nesina IP. Morphological characteristics and expression features of adhesion markers in cells of low differentiated endometrial carcinoma. Exp Oncol 2019; 41: 335–41. https://doi.org/10.32471/exp-oncology.2312-8852.vol-41-no-4.13965
Wilson MR, Reske JJ, Holladay J, et al. ARID1A and PI3-kinase pathway mutations in the endometrium drive epithelial transdifferentiation and collective invasion. Nat Commun 2019; 10: 3554.https://doi.org/10.1038/s41467-019-11403-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Experimental Oncology

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.