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NATURAL KILLER CELL-DERIVED EXOSOME  
MIMETICS AS NATURAL NANOCARRIERS  
FOR IN VITRO DELIVERY OF CHEMOTHERAPEUTICS  
TO THYROID CANCER CELLS  

Background. Exosomes have become a potential field of nanotechnology for the treatment and identification of many 
disorders. However, the generation of exosomes is a difficult, time-consuming, and low-yielding procedure. At the same 
time, exosome mimetics (EM) resemble exosomes in their characteristics but have higher production yields. The aim 
of this study was to produce natural killer (NK) cell-derived EM (NKEM) loaded with sorafenib and test their killing 
ability against thyroid cancer cell lines. Materials and Methods. Sorafenib was loaded into NKEM by mixing sorafenib 
with NK cells during NKEM production (NKEM-S). Then, these two types of nanoparticles were characterized with 
nanoparticle tracking analysis (NTA) to measure their sizes. In addition, the cellular uptake and in vitro killing effect 
of NKEM-S on thyroid cancer cell lines were investigated using confocal laser microscopy and bioluminescence imag-
ing (BLI) techniques. Results. The uptake of NKEM and NKEM-S by the thyroid cancer cells was observed. More-
over, BLI confirmed the killing and anti-proliferation effect of NKEM-S on two thyroid cancer cell lines. Especially 
important, the NKEM-S demonstrated a desirable killing effect even for anaplastic thyroid cancer (ATC) cells. Conclu-
sion. Sorafenib-loaded NKEM showed the ability to kill thyroid cancer cells in vitro, even against ATC. This provides 
a new opportunity for drug delivery systems and thyroid cancer treatment.
Keywords: thyroid cancer, exosome mimetics, natural killer cells, immunotherapy, drug delivery system.

Thyroid cancer has attracted more and more atten-
tion due to its rapid increase in incidence, and nu-
merous improvements in treatment have been ap-

plied over the past few decades, including the de-
velopment of molecularly targeted drugs and 
advancements [1, 2]. In general, thyroid cancers 
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can be categorized based on the cells and divided 
into differentiated thyroid cancer (DTC) including 
papillary thyroid carcinoma (PTC) and follicular 
thyroid carcinoma (FTC), anaplastic thyroid cancer 
(ATC), and medullary thyroid cancer (MTC) [3]. 
Fortunately, more than 90% of thyroid cancer cases 
belong to the DTC, which has an excellent progno-
sis. In contrast, as one of the most fatal malignan-
cies, ATC has worse prognosis (overall 1-year sur-
vival rate of about 20% and mean survival of less 
than 6 months) [4]. Although various therapeutic 
strategies, including surgery [4, 5], chemotherapy 
[2, 6], radiotherapy [7, 8], and thyroid stimulating 
hormone (TSH) inhibition therapy [9], have been 
used, none of them has been successful in improv-
ing the survival of ATC patients [10]. Sorafenib is 
known to kill tumors by inhibiting the proliferation 
and angiogenesis of tumor cells [11, 12] and was 
approved by the FDA for the treatment of hepato-
cellular carcinoma, advanced renal cell carcinoma, 
and DTCs [13, 14]. Although sorafenib is widely 
used for treating DTCs, however, it is not used for 
treating ATC. The development of an effective 
sorafenib delivery system to tumor cells may pro-
vide an opportunity for the treatment of ATC.

It is particularly motivating to load agents into 
the drug delivery system (DDS) to improve thera-
peutic effectiveness by increasing their accumula-
tion in the tumor and minimizing off-target effects 
[15—23]. However, the presence of biological bar-
riers reduces the interaction of nanoparticles with 
their targets, which reduces their biological utility 
and clinical translation [24, 25]. In addition, the 
cycle time of DDS is constrained due to the quick 
clearance by monocytes/macrophages or the retic-
uloendothelial system (RES) [26—28]. In compari
son with artificial nanocarriers, exosomes or small 
extracellular vesicles revealed less clearance by the 
immune system, owing to their inherent existence 
in the body [29]. For instance, it has been demon-
strated that exosomes from CD47-overexpressing 
human foreskin fibroblasts reduce phagocytosis-
mediated clearance by monocytes and macro-
phages and increase the absorption by cancer cells 
[30]. Numerous oncological and non-oncological 
diseases have been diagnosed and treated using 
exosome technology [15, 29, 31—36]. In addition, 
the biological activities mediated by exosomes, 
such as immunomodulation, induction of apopto-
sis, and enhancement of proliferation, are largely 

under the control of these proteins and cargoes [15, 
29]. However, the low production rate of exosomes 
may demand the consumption of huge amount of 
medium for their large-scale production [37—41]. 

Exosome mimetics (EM), which function bio-
logically similarly to exosomes while having higher 
yields, are emerging as a new generation of bioin-
spired-nanoscale DDS [42]. Previous research has 
used cell extrusion to create mesenchymal stem 
cell-derived EM, and these nanoparticles still have 
the exosome-like ability to deliver chemotherapeu-
tic drugs in high yields [42—45]. Notably, EM have 
several advantages over currently used synthetic 
systems. First of all, the bio-originated membrane 
of EM occurs to accelerate the internalization of the 
drug [15, 29, 42]. Secondly, the nanoscale EM size 
makes it easier to diffuse into the tumor tissue and 
extravasate into the blood vessels [16, 31, 43]. 
Thirdly, EM share biological and morphological 
similarities with exosomes. In our previous study, 
we generated NK-92MI cell-derived exosomes and 
demonstrated the therapeutic applicability of such 
nanoparticles for the treatment of melanoma cells 
[46]. In view of the above characteristics, EM in-
stead of exosomes from NK cells may present an 
opportunity for the development of safer and more 
effective DDS. In the current study, we aimed to 
develop a method for loading sorafenib into NKEM 
and test the killing effect of the sorafenib-loaded 
NKEM (NKEM-S) against thyroid cancer cell lines 
in vitro.

Materials and Methods

Cell lines. Human PTC cell line K1, purchased 
from Sigma-Aldrich, USA, was maintained in 
DMEM high-glucose medium (HyClone, USA) 
supplemented with 10% fetal bovine serum (FBS; 
Gibco, USA) and 1% penicillin/streptomycin 100X 
solution (HyClone). Human ATC cell line BHT101, 
purchased from Deutsche Sammlung von Mikro-
organismen und Zellkulturen (DSMZ, Germany), 
was maintained in DMEM high-glucose medium 
supplemented with 20% fetal bovine serum and 1% 
penicillin/streptomycin 100X solution. Human NK 
cell line NK-92MI, purchased from the American 
Type Culture Collection, USA, was cultured in 
CellGenix GMP SCGM medium (CellGenix, Ger-
many) supplemented with 2% human serum (Sig-
ma-Aldrich) and 1% penicillin/streptomycin 100X 
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solution. The cancer cell lines were cultured and 
transfected with an enhanced firefly luciferase (ef-
fluc) gene. Established stable expression of the ef-
fluc gene was confirmed via the addition of the sub-
strate D-luciferin and using the IVIS Lumina III 
imaging system (Perkin-Elmer, USA); the cells were 
referred to as K1/F and BHT101/F cells.

Generation and characterization of sorafenib-
loaded NKEM. NKEM/NKEM-S were prepared by 
adjusting the protocol in previous studies [41, 47, 
48], NK-92MI cells were suspended in a medium 
supplemented with sorafenib (50 ng/mL) and ex-
truded using a mini-extruder (Avanti Polar Lipid,  
USA). In detail, NKEM/NKEM-S were produced 
by squeezing out live NK-92MI cells through 5 μm 
and 2 μm membranes (Nuclepore, Whatman, Inc., 
USA) without or with sorafenib. Then, the NKEM/
NKEM-S were filtered through 0.22 μm filters, 
purified by ultracentrifugation at 100,000 × g 
for 1 h at 4 °C (Beckman Coulter, Brea, CA, USA), 
and then washed with PBS to obtain NKEM and 
NKEM-S. The morphologies of NKEM and 
NKEM-S were evaluated with a nanoparticle track-
ing analysis (NTA) (NanoSight LM10 instrument, 
Malvern Panalytical, UK).

Cellular uptake assay. NKEM and NKEM-S 
were labelled with DiI (Thermo Fisher Scientific, 
Waltham, MA, USA), a fluorescent lipophilic dye, 
and incubated with ATC cell line (BHT101/F cells) 
for 3 h. The cancer cells without NKEM were re-
ferred to as the blank. After incubation, the samples 
were washed, fixed, treated with Hoechst dye 
(Thermo Fisher Scientific), and covered with Vecta-

shield mounting medium (Vector Laboratories, 
USA). The samples were examined using a confocal 
laser microscope (Zeiss, LSM, Germany). 

In vitro cytotoxicity of NKEM-S. The toxicity 
of NKEM-S to the DTC cell line (K1/F) and ATC 
cell line (BHT101/F) was evaluated with bio
luminescence imaging (BLI) at various con
centrations at 24 and 48 h in a dose-dependent 
manner by using the IVIS Lumina III imaging 
system. The flows of the experiment are summa-
rized in Fig. 1. 

Statistical analysis. All data were expressed 
as the mean ± standard deviation (SD), and statisti-
cal significance was determined using GraphPad 
Prism 5 (GraphPad Software Inc., USA). A value of 
p < 0.05 was considered statistically significant. 

Results

Characterization of NKEM-S. Fig. 2, a outlines the 
detailed schematic of the NKEM-S production pro-
cess. NKEM-S had a small size distribution, with 
an average particle diameter of 201.9 nm, as re-
vealed by NTA. Drug loading resulted in no sig-
nificant change in the size of the nanoparticles 
(NKEM-S) (Fig. 2, b).  

Cellular uptake. The drug loaded into NKEM 
should be delivered into the target cells to achieve 
therapeutic effects; therefore, the interaction be-
tween cancer cells and nanoparticles was assessed. 
NKEM-S were labelled with DiI and incubated 
with BHT101/F cells. As shown in Fig. 3, NKEM 
and NKEM-S were taken up by ATC cells.

Fig. 1. Flowchart of experimental steps. Experimental steps included cell culture of natural killer cells, centrifugation, 
production of exosome mimics, loading of sorafenib, and cytotoxic effects on thyroid cancer cell lines
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Fig. 2. Characterization of 
NKEM loaded with sorafenib: 
(a) Schematic illustration of 
the production process of 
NKEM-S. (b) Size distribu-
tion of NKEM and NKEM-S 
measured by nanoparticle tra
cking analysis 

In vitro antiproliferative and killing effects of 
NKEM-S  against the thyroid cancer cells. The kill-
ing effects of NKEM-S against K1/F and BHT101/F 
cells were evaluated by BLI (Fig. 4). The cancer cells 
were cultured with NKEM-S of various concentra-
tions and subjected to BLI for 24 and 48 h. Analysis 
of the reporter gene signal in K1/F and BHT101/F 
cells (Fig. 4, a, b) indicated a dose- and time-de-
pendent cytotoxicity of NKEM-S. The quantitative 
analysis of the data showed that NKEM-S exhibited 
significant cytotoxicity to both thyroid cancer cell 
lines. Even the ATC cell line (BHT101/F) was less 
sensitive to NKEM-S as compared with the PTC 
cell line (K1/F) (Fig. 4, c, d).

Discussion

Extracellular vesicles have been exploited by DDS 
for many years [38, 47, 49—51]. For instance, exo-
somes derived from milk were used for treating 
cancer in combination with paclitaxel and doxoru-
bicin [41, 52—55], and curcumin-encapsulated 
exosomes derived from milk were shown to be re-
sistant to intestinal digestion and exhibited en-
hanced intestinal permeability [54]. In addition to 
the chemical agents, exosome-mediated delivery of 
siRNA, miRNA, and shRNA has been reported [20, 

53, 56, 57]. In comparison with artificial nanopar-
ticles such as liposomes, exosomes offer advantages 
in terms of better functions and longer circulation 
time, which may be due to their natural origin [22, 
25, 42, 58]. However, for the use of exosomes as 
a DDS, it is important to address several limitations 
in exosome preparation procedures such as low 
production yield, expensive and difficult purifica-
tion process, differences in characters and func-
tions of exosomes produced by different protocols 
[28]. According to previous studies, exosomes ge
nerated from NK-92MI cells display an anti-tumor 
ability, suggestive of their application for the 
delivery of chemotherapeutics to tumor therapy  
[17—19, 21, 23]. For example, Han et al. investiga
ted NK-derived exosome-embedded paclitaxel  
(PTX-NK-exos), and the drug-loaded exosomes ef-
fectively inhibited the proliferation and induced 
apoptosis in breast cancer cells [21].

EM have been recently developed to overcome 
the limitations of exosomes [59, 60]. For example, 
the large-scale production of EM was feasible 
through the direct extrusion of cells via microfil-
ters; and the characteristics and bio-functions of 
EM were similar to those of exosomes [40, 41, 61]. 
Gho et al. [41] produced doxorubicin-loaded EM 
by the breakdown of macrophages and confirmed 
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Fig. 3. Accumulation of NKEM/NKEM-S in BHT101/F cells

their antitumor effects following systemic injection. 
Furthermore, EM from pancreatic β-cells have 
been developed and applied for the treatment of 
diabetes [62]. Not only cells but also gram-negative 
bacteria have been used for generating EM, which 
exhibited antibacterial and antitumor responses 

[37, 38] at both in vitro and in vivo studies. The re-
sults of a recent study are similar to our results in 
that the combination of exosomes and sorafenib 
improved the targeting ability of the drug, reduced 
toxic effects on normal cells, allowed for sustained 
drug release, and indicated the antitumor impact 
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on the breast cancer cells [63]. Even the exosomes 
from the NK cells have been widely explored, while 
the EMs derived from NK cells have not been ap-
plied for the DDS in cancer therapy especially for 
thyroid cancer. In the present study, sorafenib, 
widely used as a targeted therapeutic agent for va
rious cancers including thyroid cancers, was loaded 
into NKEM and applied to treat DTC and ATC 
cells. As shown in Fig. 2, b, both NKEM and 
NKEM-S were spherical and had a size of approxi-
mately 100 nm. Although many drug loading 
methods such as incubation, saponification, per-
meabilities, and sonication have been reported, 
it remains unclear whether these loading strategies 

disrupt the integrity, stability, function, and loading 
efficiency of nanovesicles [39, 41, 64], which is a di-
rection for subsequent research. 

DDS used for therapeutic application should be 
able to deliver the incorporated therapeutic agents 
to the target site and avoid RES identification, es-
pecially macrophages that may consume foreign 
bodies by phagocytosis [38, 39, 64]. Several syn-
thetic drug delivery systems, including liposomes, 
gold nanoparticles, and polymeric nanoparticles, 
have been developed and used in preclinical and 
clinical applications [40]. Although these prepara-
tions have shown promising results, cell-produced 
DDS can better avoid RES recognition, across en-

Fig. 4. In vitro antiproliferative ability of NKEM-S to K1/F and BHT101/F cells assessed by BLI. The killing effect 
of NKEM-S on K1/F cells was shown in (a, c), and BHT101/F cells showed lower sensitivity to NKEM-S compared 
to K1/F cells (b, d). Experiments were performed at least in triplicates, and mean ± SD was plotted, *** p < 0.001 (by Stu-
dent’s t-test)
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dothelial barriers, and provide better options for 
future experimental studies [65, 66]. In the current 
study, we developed a sorafenib-loaded NKEM and 
demonstrated its efficient delivery into thyroid can-
cer cells as shown in Fig. 3. In addition, the in vitro 
killing ability of NKEM-S against two thyroid can-
cer cell lines was also confirmed (Fig. 4), but the 
lack of in vivo experiments was the one limitation 
of this study. Nevertheless, NKG2D-equipped 
nanoparticles had promising applications in tu-
mor-targeting ability in mice models of colon can-
cer [67]. Meanwhile, the expression of NKG2D in 
the NK membrane has been confirmed by several 
studies [68, 69]. These results show that nanopar-
ticles from NK cells can inherit the cell with mem-
brane components, exhibit good biosafety, and 
have a tumor-centric biodistribution in in vivo ex-
periments. Therefore, even though no in vivo ex-
periments were performed on NKEM in this study, 
the application of NKEM to the oncology treat-
ment including thyroid cancer, remains promising.

To sum up, we successfully loaded sorafenib into 
NKEM, and the nanoparticles exhibited higher in vitro 
killing ability against thyroid cancer cells, even the ATC 
cell line. Results of the study suggest that NKEM-S  
may serve as auspicious nanoparticles for DDS and 
become therapeutic agents for the treatment of ATC.
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ЕКЗОСОМОМІМЕТИКИ З КЛІТИН — ПРИРОДНИХ КІЛЕРІВ  
ЯК ПРИРОДНІ НАНОНОСІЇ ДЛЯ ДОСТАВКИ IN VITRO  
ХІМІОТЕРАПЕВТИЧНИХ ЗАСОБІВ ДО КЛІТИН  
РАКУ ЩИТОПОДІБНОЇ ЗАЛОЗИ

Стан питання. Дослідження екзосом як один з розділів нанотехнології має перспективи для діагностики та лі-
кування різноманітних захворювань. Однак, одержання екзосом є досить непростим, займає багато часу, і має 
невисокий вихід кінцевого продукту. Екзосомоміметики (ЕМ) нагадують екзосоми за своїми характеристика-
ми, але їх можна одержати із досить високим виходом. Мета дослідження полягала в одержанні ЕМ з клітин — 
природних кілерів (ПК) — ПКЕМ, навантажених сорафенібом та вивченні їхньої цитотоксичної здатності щодо 
клітин ліній раку щитоподібної залози. Матеріали та методи. ПКЕМ, навантажені сорафенібом (ПКЕМ-С), 
одержували змішуванням сорафенібу з ПК під час продукування ПКЕМ. ПКЕМ та ПКЕМ-С характеризували 
шляхом аналізу траєкторій руху наночастинок для визначення їхніх розмірів. Визначали також поглинання 
цих наночастинок клітинами раку щитоподібної залози in vitro та їхню цитотоксичну здатність щодо цих клі-
тин. Використовували методи конфокальної лазерної мікроскопії та біолюмінесцентної візуалізації. Результа-
ти. Клітини раку щитоподібної залози поглинали ПКЕМ та ПКЕМ-С. Методом біолюмінесцентної візуалізації 
підтверджено цитотоксичний та антипроліферативний ефекти ПКЕМ-С у відношенні клітин двох ліній раку 
щитоподібної залози in vitro. Що особливо важливо, ПКЕМ-С демонстрували цитотоксичну дію на клітини 
анапластичного раку щитоподібної залози. Висновки. Навантажені сорафенібом ПКЕМ здатні спричиняти за-
гибель клітин раку щитоподібної залози, особливо анапластичного раку, in vitro. Це відкриває нові можливості 
систем доставки лікарських засобів для лікування хворих на рак щитоподібної залози.
Ключові слова: рак щитоподібної залози, екзосомоміметики, природні кілери, імунотерапія, системи доставки 
лікарських засобів.




