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The review presents modern ideas about tumor microenvironment, which most researchers recognize as the main “player” in tumor 
cell invasion, cell migration and metastasis. The current data on the main components of the stroma and the microenvironment, 
which play the role of the driving force in tumor progression, are analyzed. In particular, the review highlights the issues of origin, 
biological traits, phenotypic plasticity, functional heterogeneity of activated fibroblasts — myofibroblasts and tumor-associated 
fibroblasts, which in recent years have received much attention. Such components of the extracellular matrix proteome as collagen 
and matrix metalloproteinases are discussed in detail. They are mostly produced by activated fibroblasts and, on the one hand, 
initiate the development of desmoplasia due to type I collagen and, on the other hand, promote degradation of extracellular matrix 
proteins due to metalloproteinases, which generally leads to tissue remodeling that promotes tumor progression. Possibilities of using 
the most important indicators of extracellular matrix remodeling as potential markers and targets of clinical strategy are discussed.
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Despite significant advances in the diagnosis, 
prognosis and treatment of patients with malignant 
neoplasms having been achieved through the wide-
spread introduction of molecular and molecular ge-
netic methods in experimental and clinical oncology, 
which has contributed to the development of various 
panels of diagnostic and prognostic markers [1], many 
challenges remain to be addressed [2].

Most studies in cancer biology focus on the mor-
phological characteristics of the parenchymal compo-
nent of the tumor, which is the basis for the classifica-
tion of tumors, while until recently only a secondary role 
was given to the stromal component. To date, this issue 
is already being reconsidered by many experts. In vi-
tro and in vivo experiments and clinical findings have 
demonstrated an importance of the tumor stroma, its 
microenvironment, as well as their relationship with the 
parenchymal component of the primary lesion in tumor 
progression, in particular in the formation of metastatic 
phenotype [3]. Nowadays, solid tumors are considered 
as complex organ-like structures, which include not 
only tumor cells but also their microenvironment with 
different types of cells in the altered extracellular matrix 
(ECM), as well as elements of the vascular system [4]. 
It is known that often the microenvironment in solid 
tumors occupies most of the total mass, and all com-
ponents of tumors are significantly different from those 
in normal organs.

The factors of the stromal microenvironment in-
clude the following complex: 1) non-tumor cells (en-
dothelial pericytes, smooth muscle cells, fibroblasts, 
myofibroblasts (МFs)); 2) extracellular molecules, 
namely non-classical elements of the stroma (adhe-
sion molecules, growth factors, hormones, proteins, 
enzymes, metabolites); 3) ECM (connective tissue 
elements, including collagen, elastic, argyrophilic 
fibers, as well as nerves) [5, 6].

Many studies have shown that intratumoral signal-
ing, transport mechanisms, metabolism, oxygenation 
and immunogenicity are influenced by ECM that 
also controls and regulates cell-cell, and cell-matrix 
interactions. By exerting such control, it affects not 
only the degree of malignancy of the growing tumor, 
but also its response to therapy [7]. Considering the 
microenvironment as a combination of the non-tumor 
matrix of the tumor with blood vessels, cells of inflam-
matory infiltrate and fibroblasts, ECM is considered 
to be of special importance [5] playing a leading role 
in the progression of malignant growth  [8, 9]. It in-
cludes: 1) the basement membrane, which maintains 
balance in the location of epithelial/endothelial cells, 
and 2) the interstitial matrix that supports the ordering 
of the lower stromal compartment. 28 types of colla-
gen are the main components of ECM [10].

It has been established that the interstitial matrix 
is the base of the stroma and plays a major role in cell 
migration, adhesion, angiogenesis, tissue develop-
ment and repair. The currently identified types of colla-
gen form a unique composition of the interstitial matrix 
and can be divided into several separate subgroups, 
such as fibrillar and reticulate collagen. It should 
be noted that among the components of this matrix 
fibrillar collagen is the most abundant, in particular I, 
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II, III, V types, as well as beaded threads with the syn-
thesis of collagen type VI, which is produced by stromal 
fibroblasts and is the most studied one [11, 12].

The key role of activated 
fibroblasts of connective tumor 
tissue in ECM remodeling
Recently, comparisons of tumors with the wounds 

that never heal have become widely accepted  [13], 
as wound and tumor stroma have many common 
features, including activation of fibroblasts, increased 
production of ECM proteins, and intensive remodeling 
processes [14]. It is known that fibroblasts are the main 
type of cells in both normal and tumor stroma of all 
tumors. Recently, researchers have focused on two 
important features of fibroblasts in tumors: their ac-
quisition of the smooth muscle cell phenotype, i.e. dif-
ferentiation into MFs, and the acquisition of embryonic 
features of differentiation and functioning (so-called 
tumor-associated fibroblasts (TAF)). There has long 
been a debate about the differences between MF and 
TAF. It was found that both cell types are activated 
fibroblasts, morphologically similar to each other, but 
with certain differences, and with significantly different 
functional characteristics [15–18].

In depicting the portrait of MF, it should be noted 
that these cells have differences in the following 
criteria: altered membrane and highly active endo-
plasmic reticulum, expression of smooth muscle 
α-actin  (α-SMA), increased levels of vimentin, the 
formation of complex organized stress fibers and 
complexes called fibronexus, which combines con-
tractile microfilaments and fibronectin (FN), matrix 
expression protein [18]. Expression of α-SMA is most 
often used as a marker of MF. In addition, FN, perios-
tin, and proline 4-hydroxylase have also been identi-
fied as potential markers of these cells  [19]. There 
is a report on a difference between MF and TAF in their 
transcription profiles [20].

MFs were first identified in the granulation tissue 
by Gabbiani [21] who gave them this name, and these 
cells were characterized as modified fibroblasts, 
in which the bundles of microfilaments with dense 
bodies located between them and connective tissue 
cracks could be determined.

To date, many researchers have proven that in case 
of tissue damage as well as malignant transformation 
of the epithelium, a complex process of activation 
of fibroblasts into MF occurs, due to which the lat-
ter acquire a migratory phenotype, and inhabit the 
tumor tissue. Such transformations are a response 
to changes in the composition and organization of ECM 
and to cytokines that are locally released from inflam-
matory and tumor cells  [22]. The second stimulus 
of such a phenotypic transition is a change in the me-
chanical microenvironment [23]. It was found that the 
so-called “crosslinked” ECM, which usually protects 
fibroblasts of intact tissues, loses its structure due 
to constant reconstruction of ECM during damage 
and oncogenesis, which contributes to the formation 

of transmembrane complex ECM protein — FN in acti-
vated fibroblasts, i.e. MF. Architectonically altered cells 
are considered as an intermediate stage of fibroblast 
differentiation into MF, so-called protomyofibroblasts. 
Such cells acquire smooth muscle function through the 
formation of neoexpression of α-SMA and already have 
the status of mature MF. Cytokines, including platelet-
derived growth factor, interleukin-4, insulin-like growth 
factor-2, and transforming growth factor (TGF)-β, have 
been reported to be involved in fibroblast transdif-
ferentiation in MF. TGF-β plays a primary role in this 
process [24]. In addition, it is argued that fibroblast dif-
ferentiation into MF occurs in the invasive tumor front 
with the participation of the ECM component of the 
glycoprotein tenascin C, and this can be used as a new 
target and marker for the identification of MF [25].

The response of connective tissue to the develop-
ment of epithelial tumor manifests itself in fibrosis 
with increased tissue stiffness, which is associated 
with dense production and deposition of extratumor 
matrix molecules, including collagen type I, and oc-
curs with involvement of MF, the number of which 
increases significantly  [26]. The conditions thus 
created in the tumor environment together with the 
mechanical stress toward connective tissue promote 
migration, invasion of malignantly transformed cells 
and subsequent metastasis, and therefore play a key 
role in tumor progression [27].

In addition, it has been shown that adhesion mole
cules, such as intercellular adhesion molecules, vas-
cular cell adhesion molecules and nerve cell adhesion 
molecules, are expressed upon MF activation. Due 
to this, lymphocytes, mast cells, neutrophils can come 
into contact with MF and in this interaction to par-
ticipate in immunological reactions and inflammation 
and affect the peculiarities of the tumor process. 
Depending on the type of tissue to be remodeled, 
the source of MF progenitors may be different. The 
main progenitors of MF are intact fibroblasts, others 
include mesenchymal cells such as pericytes and vas-
cular smooth muscle cells, bone marrow fibrocytes, 
and mesenchymal stem cells. The role of epithelial-
endothelial-mesenchymal transition due to which 
differentiated or malignantly transformed epithelial 
cells, as well as endothelial cells, undergo pheno-
typic transformation and are alternative sources of MF, 
is considered [28, 29].

This indicates that MF represent a heterogeneous 
population of cells, and this should affect the course 
of cancer, especially since these cells themselves 
express numerous growth factors and inflammatory 
chemokines, which are involved in remodeling of the 
tumor stroma, regulation of motility of malignantly 
transformed cells and induction of chemotherapy-
resistant cell subpopulations. In addition, it is reported 
that the increased number of MF is associated with 
poor overall survival of patients and is a reason to pre-
dict unsatisfactory 3- and 5-year recurrence-free 
survival. These data are based on a meta-analysis 
of published clinical trials of 2,606 patients with solid 
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tumors in which MF were identified using α-SMA stain-
ing [30]. Some studies have confirmed that an increase 
in stromal MF is a poor prognostic factor in patients 
with solid tumors [31, 32], and it has been shown that 
an increased MF count is directly related to the ag-
gressive biological behavior of tumors and increased 
susceptibility to recurrence  [33, 34]. However, not 
all publications confirm these conclusions  [35,  36]. 
Given the ambiguity of the literature on the use 
of quantitative characteristics of MF in primary cancer 
patients as markers of the tumor process, in the future 
it is advisable to use molecular factors involved in the 
acquisition of phenotype of mature MF, to find ways 
to counteract the aggressive behavior of these cells 
and develop anticancer therapy.

Thus, MF represents a unique subpopulation 
of fibroblasts, which is phenotypically intermediate 
between smooth muscle cells and fibroblasts [37], and 
plays an important role in tumor progression. At the 
same time, the inconsistency of the data on the prog-
nostic value of these cells as clinical criteria requires 
further research on large cohorts of cancer patients.

TAFs represent another type of activated fibro-
blasts. These cells are also activated during malignant 
growth and play a key role in the development of local 
tumor progression and metastasis. TAFs differ from 
normal fibroblasts of tumor stroma by increased col-
lagen formation, expression of ECM proteins, mostly 
tumor factors, vimentin, desmin, fibroblast activation 
protein [38–40]. TAFs also secrete MMPs, which sig-
nificantly affect neovascularization due to the release 
of VEGF from the degraded matrix  [41, 42]. In ad-
dition, neoplastic cells have been shown to be able 
to recruit fibroblasts through a variety of growth fac-
tors and cytokines [43, 44]. Many researchers note 
that TAFs, on the one hand, are extremely influential 
cells in such important aspects of tumor develop-
ment as tumor growth, progression, metastasis and 
response to therapy because they interact with cel-
lular and matrix components of the microenviron-
ment, such as endothelial, immune cells, collagen, 
FN, elastin. On the other hand, TAFs are recipients 
of chemical and physical signals generated by tumor 
microenvironment, and due to such interactions, TAF 
phenotype is constantly evolving along with the tumor 
progression [45].

According to the literature, there are several ways 
of TAF formation, in particular, activation of resident 
fibroblasts or other progenitor cells. Such cells may 
include mesenchymal stem cells, bone marrow de-
rivatives, epithelial cells, pericytes, smooth muscle 
cells, adipocytes, fibrocytes, carcinoma cells, as well 
as some specialized cells such as stellate cells of pan-
creas and liver, myoepithelial cells of mammary gland, 
and pericryptal cells of the gastrointestinal tract. 
This spectrum of TAF progenitors partly explains the 
heterogeneity of these cells, which has recently been 
pointed out by many researchers. In addition, the 
heterogeneity may be due to the fact that the activa-
tion of TAF occurs in various ways, including those 

of malignantly transformed cells — TGF-β1, platelet-
derived growth factor α, platelet-derived growth fac-
tor β, as well as hypoxia, oxidative stress, and matrix 
stiffness. All of them can interact and form different 
phenotypes of TAF. Now some studies have shown 
that the heterogeneity of TAF may be due to the exis-
tence of TAF subtypes differing by protein expression, 
paracrine signaling, tumorigenicity, invasion profile, 
the ability to modify the ECM [38, 41, 46–48].

Recently, a number of publications focused on the 
existence of two subtypes of TAF, one of which has 
protumoral properties, while the other — antitumoral 
ones. This is associated with a complex interaction bet
ween TAF, the biological characteristics of tumor and 
immunocompetent cells, which largely determines the 
response of the tumor to therapy or the further tumor 
progression and metastasis. In particular, the expres-
sion of oncogenes c-MYC, c-Fos and p62 protein 
in activated fibroblasts and macrophages of patients 
with breast cancer (BC) has been shown to correlate 
with a more favorable prognosis [49]. In general, the 
currently established ways of TAF generation, their 
functional heterogeneity and phenotypic plasticity, 
on the one hand, can promote migration and invasion 
of tumor cells and metastasis, on the other hand, lead 
to a positive response to therapy [50, 51].

TAF has been reported to be involved in tumor 
invasion and metastasis by induction of epithelial-
mesenchymal transition and secretion of TGFβ and 
hepatocyte growth factor. Tumor cells that undergo 
epithelial-mesenchymal transition are characterized 
by enhanced migratory and invasive properties, while 
losing adhesive ones [6, 50]. A specific marker of TAF 
has been shown to be a fibroblast activation protein, 
which is a cell surface serine protease type II and 
exerts both dipeptidyl peptidase and endopeptidase 
activities with the ability to cleave gelatin and type I col-
lagen [52]. The important role of TAF in the processes 
of malignant transformation of epithelium, tumor 
growth and metastasis has been proven by experimen-
tal studies in vitro and in vivo in their cocultivation with 
cells of different histogenesis or their administration 
to animals together with TAF [41, 53–55].

Recently, many studies have shown that TAFs make 
a major impact to the process of fibrotic changes in the 
stromal component of tumor, i.e. its desmoplasia and 
ECM remodeling, which are considered the most fa-
vorable factors of tumor progression [43, 56, 57]. The 
development of desmoplasia occurs in several stages: 
cross-linking of collagen, elongation of fibers, and 
their restructuring, which is associated with reduced 
survival of cancer patients [58, 59]. In this case, TAFs 
secrete an increased amount of metalloproteinases 
(MMPs) and lysyl oxidase proteins, which catalyze 
these stages. MMPs expressed by these cells play 
a key role in neovascularization due to the release 
of VEGF from the degraded matrix [41, 42]. An impor-
tant step in desmoplasia is the increased expression 
of collagen derived from stroma fibroblasts  [60]. 
Collagen accumulation is accompanied by increased 
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crosslinking and density of connective tissue, as well 
as increased intercellular fluid pressure. This effect 
reduces the income of drugs during chemotherapy 
and immunotherapy. It also promotes an invasion 
of tumor cells. Desmoplasia and high levels of TAF 
have been reported to correlate with poor prognosis 
and low survival in patients with many cancer types, 
including BC [61].

Thus, the available information in the literature 
on the highlighted aspect of research has shown 
that the main feature of cancer is changes in the 
microarchitectonics of tumor tissue, in particular the 
tumor microenvironment, where a key role is played 
by activated fibroblasts, namely MF and TAF, which 
results in increased invasive and metastatic properties 
of tumor cells, poor prognosis and cancer resistance 
to chemotherapy.

Influence of ECM components 
on migratory, invasive and 
metastatic properties
According to the numerous literature data, tumor 

progression is impossible without ECM degradation, 
which occurs due to the action of the MMPs ac-
celerating the invasion and migration of malignantly 
transformed cells from the primary lesion. MMPs are 
proteolytic enzymes of the secretory or membrane 
type that act on the protein components of the ECM, 
such as collagen, gelatin, elastin, laminin, FN and in-
tegrins. In addition, they can affect the function of en-
dothelial cells, namely their migration, proliferation, 
Ca2+ signaling, and contraction. MMPs are synthesized 
as zymogens and are activated into functional forms 
by autoproteolysis or with the involvement of other 
proteases [62].

These endoproteases belong to the family of a con-
stantly growing group of zinc and calcium-dependent 
endopeptidases, which accounts 20 enzymes, and 
in contrast to other proteolytic enzymes, including 
cathepsins, serine proteases are able to completely 
decompose all ECM structures of the tumor due 
to specific hydrolysis of basic proteins. Their role 
is to destroy the collagen of the basement membrane 
and degrade the ECM, and according to clinical ob-
servations, their activity always correlates with the 
invasion of tumor cells and metastasis [63, 64].

Today there are two systems of MMP classifica-
tion. The first, the best known, is based on substrate 
specificity and divides MMPs into 6 main groups: colla-
genase, gelatinase, stromelysin, matrilysin, membrane 
type MMP, metalloelastase, emalysin, and others [62]. 
A more recent new classification of MMPs is based 
on the genomic studies of their domain organization, 
which showed that there are 24 different genes encod-
ing members of the MMP family [65–75].

MMP are produced by various cells (epithelial 
cells, fibroblasts, macrophages, neutrophils, smooth 
muscle cells of vascular wall) [76]. Under the influence 
of inflammatory cytokines, the synthesis of MMPs 
increases. The relationship between the production 

of these enzymes and the presence of TAF in tumors 
has been established. The lysyl oxidase family and 
MMPs are considered to be the two main types of re-
modeling enzymes synthesized by TAF. These cells 
control and tune the TAF-ECM interaction.

MMPs play a role in tissue reconstruction during 
various physiological processes, such as angiogenesis, 
morphogenesis, wound healing, as well as vari-
ous pathological processes, in particular malignant 
growth. MMP activity can be controlled by tissue 
endogenous MMP inhibitors and transcriptionally 
regulated by miRNAs. MMP/tissue endogenous MMP 
ratios are often used to determine the degree of ECM 
protein degradation and tissue reconstruction and 
have been proposed as biomarkers for cancer diag-
nostics [76–79]. Since tissue remodeling is a dynamic 
process, the spatial distribution of different MMPs 
in the tissue may vary. Due to the differences in the 
proteolytic activity of MMPs relative to different sub-
strates, their activity may change during the course 
of the disease. This makes it important to determine 
different MMPs and tissue endogenous MMP at all 
stages of the disease [76].

The most studied MMPs involved in oncogenesis 
are MMP-2 and MMP-9, which are classified as gela-
tinases and play an important role in the destruction 
of ECM, thus promoting migration, invasion and me-
tastasis of tumor cells [80–83]. If the function of these 
MMPs is well defined in tumors of various genesis, 
including BC, the role of MMP-8, which is expressed 
in polymorphonuclear neutrophils and is also known 
as neutrophilic collagenase or collagenase-2 is poorly 
studied yet. Moreover, recently the impact of MMPs 
is considered not only from the standpoint of pro-
moting the generalization of the tumor process due 
to their destructive effect, but also in terms of positive 
effects on the survival of cancer patients. However, 
the mechanisms of such opposite effects are not fully 
understood, and experimental studies in this area are 
scarce.

In vitro experiments on various BC cultures, 
including primary normal cells and ductal carcino-
ma-associated myoepithelial cells in situ (DCIS), 
as well as normal (N-1089) and DCIS modified myo-
epithelial (β6-1089) cell lines, have studied the effect 
of MMP-8 on the adhesion and migration of cells into 
ECM. It has been established that normal myoepithelial 
cells of the mammary ducts play the role of tumor sup-
pressor and express MMP-8, while during the devel-
opment of cancer (namely ductal carcinoma in situ), 
they acquire the function of a promoter and lose this 
enzyme. As a result of experimental simulation of high 
expression of MMP-8 and its knockdown using 2D 
and 3D analysis of tumor cell invasion, it was shown 
that MMP-8 can exert different effects on cell adhe-
sion and TGF-beta signaling and gelatinolytic activity 
of MMP-9. Increased expression of MMP-8 in β6-
1089 cells increased their adhesion to ECM proteins 
and decreased cell migration. At the same time, the 
MMP-8 knockdown in N-1089 cell line reduced adhe-
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sion and enhanced the migration of tumor cells into 
the environment. High MMP-8 expression reduced 
TGF-β signaling and gelatinolytic activity, whereas 
MMP-8 knockdown enhanced these processes. Thus, 
MMP-8 has been shown to be an important compo-
nent of myoepithelial tumor suppressor function, which 
in addition to the destructive effect is able to restore the 
interaction of myoepithelial cells with the environment, 
counteract TGF-β signaling and proteolysis of MMP-9, 
which inhibits tumor invasion [84]. This study design 
allows determining the risk of progression of ductal 
BC in situ by assessing the expression of MMP-8.

There are few genetic studies of MMP-8. In par-
ticular, it was found that melanomas are characterized 
by somatic MMP-8 mutations, which reduce the activ-
ity of MMP-8 and lead to increased colony formation 
and cell migration in vitro, and the formation of me-
tastases in vivo. Analysis of microchips of epigenetic 
regulation of MMPs in BC and glioma cells revealed 
epigenetic inactivation of MMP-8 in contrast to other 
MMPs, which explains a decrease of MMP-8 activity 
in various malignant neoplasms not associated with 
genetic changes [85].

The study of antitumor molecular mechanisms 
of MMP-8 action in in vitro and in vivo experiments 
showed that collagenase-2 triggers oncosuppres-
sive molecular cascades after cleavage of various 
non-extracellular substrates. In particular, in lung 
adenocarcinoma cells treated with hepatocyte growth 
factors inhibition of proliferation, reduced invasion, 
and increased active MMPs were observed [86]. At the 
same time, MMP-8 mRNA expression was increased 
along with other MMPs in chemotherapy-resistant ag-
gressive lung cancer cell lines [87]. The lack of MMP 
expression in prostate cancer cells has been shown 
to enhance β1-integrin ligand binding and increased 
invasion of prostate cancer cells in vitro, as well as in-
creased lung extravasation in BC in vivo [88].

Three independent experimental studies have 
shown that MMP-8 reduces intercellular fluid pres-
sure in tumors, increases fluid flow in various mouse 
tumors, including lung cancer, soft tissue sarcoma, 
and increases the effectiveness of chemotherapy with 
liposomal forms of drugs [89–91]. On the other hand, 
some clinical studies suggest that certain treatments 
may increase MMP levels, in particular MMP-8, and 
promote resistance to chemotherapy, in particular, 
resistance to sunitinib in patients with renal can-
cer [92]. There are interesting results of in vivo studies 
conducted on the model of BC in mice, which proved 
the possibility of visualizing different levels of MMP, 
including MMP-8 by tomography. It seems reasonable 
to suggest this phenomenon as a diagnostic tool for 
assessing tumor progression [93].

In terms of the above bidirectional action of MMP, 
namely the ability to destroy and alter the function 
of various bioactive molecules, which leads to stimula-
tion of tumor growth, and the opposite effect — inhibi-
tion of invasion and proliferation of tumor cells by cleav-
age of non-structural substrate (non-matrix bioactive 

molecules), an analytical study of 171 publications was 
conducted to determine the levels of MMP-8 in tumors 
of different genesis and the possibility of using the data 
in clinical practice as prognostic factors or treatment 
targets. As it has been shown, in BC, skin cancer, 
cancer of oral cavity, elevated levels of MMP-8 inhibit 
the invasion and proliferation of tumor cells, thereby 
preventing metastasis by cleavage of non-structural 
substrates of the microenvironment. In contrast, high 
levels of MMP-8 in patients with hepatic and gastric 
cancer worsen the prognosis. Thus, many researchers 
have shown that MMP-8 levels are differently associ-
ated with invasive and metastatic properties of tumors 
depending on their histogenesis and therefore have 
a prognostic potential [94].

Recently, the attempts have been made to elu-
cidate the mechanisms underlying protective role 
of MMP-8 in tumor progression and metastasis. Using 
BC cells with different metastatic activity (highly meta-
static MDA-MB-435 cells and the cells with lower met-
astatic potential — MDA-MB-468 and MDA-MB-231), 
it has been shown that MMP-8 is expressed in all 
these cell lines, but the expression of MMP-8 in MDA-
MB-231 cells causes a decrease in the level of miR-
21, which regulates a large number of target genes 
involved in carcinogenesis. This in turn leads to a de-
crease of tumor growth and the formation of lung 
metastases demonstrated in in vivo experiments. The 
mechanism of the protective role of MMP-8 in tumor 
progression and metastasis of MDA-MB-231 BC cells 
has been associated with decorin cleavage and sub-
sequent reduction of TGF-β signaling that control 
miR-21 levels. In addition, it is noted that inhibition 
of miR-21 induced by MMP-8 increases the level 
of tumor suppressors and promotes programmed cell 
death, which may also contribute to the suppression 
of tumor progression and metastasis of BC cells that 
express this MMP [95]. Therefore, the data obtained 
in the experiments can be taken into account when 
developing a personalized approach to the treatment 
of patients with BC.

It is known that one of the most important compo-
nents of ECM of the tumor, which is a target for the 
destructive effect of MMP, is collagen. On the other 
hand, collagen plays a primary role in the processes 
of fibrosis, which are now known as desmoplasia 
and are considered the driving force of invasion and 
migration of tumor cells outside the primary lesion. 
It has been established that collagen biosynthesis 
can be regulated by malignantly transformed cells 
via mutations in genes, transcription factors, signal-
ing pathways and receptors. Collagen has also been 
shown to affect the properties of tumor cells through 
inhibitors, tyrosine kinase receptors, and some sig-
naling pathways. Experimental studies suggest that 
hypoxia, prevalent under conditions of increased 
collagen content, enhances tumor progression, and 
ECM molecules such as FN, hyaluronic acid, laminin 
and MMP, when interacting with collagen, affect the 
invasive properties of tumor cells that ultimately relates 
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to prognosis, recurrence, metastasis and resistance 
to chemo-radiation treatment [96].

It is believed that one of the factors in the tumor 
microenvironment, which regulates proliferation, 
migration, invasion and survival of cells is collagen 
type I  [97]. Recently, the relationship between the 
expression of collagen type I alpha 1 in tumor cells 
and the clinical and pathological characteristics and 
survival of patients has been shown using the clinical 
material of patients with BC. Elevated collagen type 
I alpha 1 levels have been shown to be associated with 
poor survival, especially in women with ER+ tumors. 
At the same time, in the case of high levels of this form 
of collagen, a better response to cisplatin-based che-
motherapy was observed. According to the authors, 
collagen type I alpha 1 may serve as a new prognostic 
biomarker and a potential therapeutic target in patients 
with BC, especially ER+ tumors [98].

Many studies have shown that the leading role 
in oncogenesis belongs to fibrillar collagen types I and 
II, which belong to stromal collagen and are produced 
by TAF [99–101]. Collagen and hyaluronan have also 
been found to be the most common components 
of the extracellular matrix, and their increased expres-
sion in tumors is associated with tumor progression 
and metastasis  [102]. It has been shown that type 
I collagen, which is the main component of fibrous 
ECM, in patients with invasive ductal BC undergoes 
a complex chain of changes that accompany tumor 
progression and is associated with changes of colla-
gen composition and reorganization with collagen fiber 
alignment. Correlation analysis between such align-
ment and a large set of proteins showed a different 
direction of the relationships between them. Among 
these proteins, candidate proteins have been identi-
fied to study the structural and cellular effects on the 
alignment of collagen, in particular tenascin-C and 
thrombospondin-2 [103]. It is also noted that the large 
expression of type I collagen contributes to the rigidity 
of tumor tissue, increases the mechanical stress that 
promotes the proliferation of malignantly transformed 
cells, their metastasis due to the activation of the 
TGF-β signaling pathway. Attention is drawn to the fact 
that the increased mechanical stress causes compres-
sion of blood vessels and leads to hypoperfusion with 
impaired flow of drugs to the tumor tissue [104].

Other studies have shown that the high density 
of collagen in the ECM, which is strongly aligned and 
leads to a strictly directed, so-called contact migra-
tion of tumor cells from the focus of malignant growth, 
can be reconstructed due to traction force controlled 
by myosin contractility or MM proteolytic activity result-
ing in the increased or decreased contact migration 
of cells [105]. The data based on the results of morpho-
metric, immunohistochemical study and application 
of RGB modeling have shown that under oncogenesis 
of invasive BC of non-specific type, in contrast to fi-
broadenoma, there are changes in physicochemical 
properties of collagen fibers of tumor stroma [106]. 
According to the researchers, this may be due to the 

synthesis of TAF type II collagen, which is not charac-
teristic for loose connective tissue of the breast, how-
ever its secretion by connective tissue cells has been 
found along with that of type I collagen. It has been 
suggested that in such cells the genes characteristic 
of cartilage tissue are expressed, i.e. the cells acquire 
osteoblastic phenotype features. Such findings seem 
to be related to the known fact of frequent metastasis 
of BC to bone tissue.

Also interesting were the features of collagen 
fibrous structures, identified by the morphological 
examination of the tumor stroma of patients with gas-
tric cancer and stained with picrofuxin, in comparison 
with such connective tissue of patients not affected 
by cancer. The data obtained showed that patients 
with gastric cancer have more immature components 
of collagen, which indicate its qualitative changes. 
Weak, moderate and significant changes in collagen 
fibers were noted. It turned out that with weak and 
moderate changes, they have the appearance of nor-
mal collagen fibers, except for such features as align-
ment and density. In the case of strong changes, the 
fibrous structures were of significant density, thickness 
and less intense staining. In addition, a large amount 
of MF and increased expression of mesyloxidase, 
an enzyme that mediates the “crosslinking” of collagen 
molecules, which may contribute to increased colla-
gen deposition and denser “crosslinking”, has been 
revealed. Using the high-tech technique of collagen 
fiber visualization 5 parameters of its architecture, 
in particular alignment, density, width, length, and 
straightness were found to be increased in the tumor 
microenvironment. When comparing these indices 
with patient’s survival, it was determined that of all 
5 characteristics, the width is the most significant 
parameter in the prognosis, as confirmed by two in-
dependent cohort studies in groups of patients with 
gastric cancer involving 225 and 151 patients  [107]. 
In addition, the researchers found that overall 1-year 
survival and increased collagen width were inversely 
related. It is supposed that the prognostic value of col-
lagen width is much better than conventional clinical 
and pathological indicators.

With the prospect of implementation in clinical 
practice, studies of the concentration of serum col-
lagen type I (aminoterminal propeptide) and mark-
ers of degradation (carboxyterminal telopeptide) 
in patients with BC of different molecular subtypes 
are being conducted. It was found that before and 
after surgery, the concentration of carboxyterminal 
telopeptide increased linearly from ductal cancer 
in situ to stages I–III and the disease characterized 
by metastatic spread of tumor cells. High preoperative 
levels of carboxyterminal telopeptide were associated 
with better survival of patients with luminal BC subtype, 
and in patients with triple negative BC high levels 
of the index were recognized as an objective predic-
tor of recurrence-free survival, as evidenced by both 
single-factor and multifactorial analysis [108].
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Finally, drawing parallels between the biological 
effects on the tissue components of the microenviron-
ment in the developed tumor — MMP-8 as a protease 
that have destructive power, and collagen as the sub-
strate to which this action is directed — the bilateral 
nature of their manifestation can be traced. For the 
most part, the progression of malignant growth is de-
termined by increasing the proliferation, invasion and 
migration of tumor cells, as well as inhibition of these 
processes. This ambiguous development in the mi-
croenvironment of the tumor can be explained by the 
existence of two domains in each MMP, one of which 
has a suppressive effect, and the second promotes 
tumor progression [94].

Prospects for further research
Analysis of the literature allowed us to understand 

how complex are all the components of the micro-
environment by signaling, metabolic-immunogenic 
relations, and as a consequence heterogeneous and 
variable in the dynamics of the tumor process, and 
why it is impossible to make a stable idea of the true 
role of each of them as prognostic factors without 
comprehensive assessment using modern high-tech 
methods of visualization and machine learning, which 
are part of the methodology of artificial intelligence. 
It is not surprising, therefore, that more and more 
publications have recently appeared with the data 
on the development and testing of cancer-on-chip 
platforms designed for further integration with ar-
tificial intelligence. Undoubtedly, this methodology 
will play a crucial role in the near future in all areas 
of medicine. In particular, research in 3D cell culture, 
tissue engineering, and microfluidics has led to the 
development of on-chip cancer platforms that en-
hance in vitro tumor environment modeling for drug 
development with future integration with artificial intel-
ligence to improve prognostic models for anticancer 
screening. At the same time, on-chip cancer platforms 
are being created that simulate the microenvironment 
in vivo and, when integrated with artificial intelligence, 
help to expand understanding of cancer pathophysiol-
ogy, optimize diagnosis, personalize treatment, and 
improve prognostic models for drug screening [109]. 
It is noted that the integration of artificial intelligence 
and nanotechnology, in terms of the well-known fact 
of tumor heterogeneity, can overcome the difficulties 
of diagnostic, prognostic and therapeutic accuracy 
due to algorithms for analysis and classification of cer-
tain criteria for objective assessment of metastatic 
potential of tumor cells from the primary lesion [110].

In terms of the significant influence of biology 
of stroma and collagen on oncogenesis and me-
tastasis, the qualitative characteristics of collagen 
structures, in particular aggregated thick (dense) 
collagen and dispersed thin one in patients with 
triple negative BC in comparison with invasive intra-
ductal BC and benign neoplasms are being studied. 
Finally, new approaches to image processing and 
quantification of profiling of collagen structures us-

ing numerical imaging parameters in integration with 
artificial intelligence have contributed to the develop-
ment of a prognostic model and the assertion that 
only scanning of histological specimens and not the 
results of discrete numbers obtained manually with 
a certain subjectivity in the assessment, is the future 
of pathology with the prospect of transition from basal 
staining with hematoxylin and eosin to immunohis-
tochemical and iminofluorescent staining [111, 112]. 
The importance of using modern research methods 
such as multiplex imaging, digital pathology, flow cy-
tometry, and microscopy in combination with artifical 
intelligence, provides a powerful basis for fundamental 
and translational cancer research [113, 114].

As a result of the application of artificial intelligence 
approaches, in particular spectroscopy and machine 
learning, in determining changes in such biochemical 
components of ECM as collagen, lipids, nucleic acids 
in different molecular subtypes of BC identified dur-
ing the studies, there were obtained informative data 
sets which accurately reflect the molecular subtypes 
of tumors. This allowed us to make assumptions about 
the possibility of creating a methodology for accurate 
diagnosis and monitoring of cancer in real time [115].

The data showed that on the basis of such charac-
teristics of collagen fibers as shape, size and structure 
of the image in the tissues of atherosclerotic arteries 
they can be divided into 5 groups using the meth-
ods of multiphoton microscopy and machine learn-
ing [116], which many researchers regard as the most 
effective approach for analyzing the spatial structures 
of collagen.

The artificial intelligence model was used to deter-
mine the possibility of predicting the overall survival 
of patients with diffuse large B-cell lymphoma by the 
proximity of the location of collagen VI in relation 
to tumor cells. It has been shown that the significant 
proximity of collagen to malignantly transformed cells 
is associated with better survival of patients with this 
pathology [117]. Other researchers have shown that 
the use of spatial interference microscopy to screen 
for colorectal cancer, followed by the use of artificial 
intelligence, makes it possible to create a powerful 
combination of data for screening, as well as paving 
the way for internal objective markers that do not 
depend on training and bias. In addition, it was found 
that due to the selective sensitivity to collagen fibers, 
this method allows to obtain information of prognos-
tic value with an accuracy of detection of benign and 
malignant tumors of 97% [118].

Due to the use of a wide range of parameters 
to identify changes in puncture biopsies of the mam-
mary gland based on histological evaluation of various 
structural components and pathological processes us-
ing machine learning based on neural networks, a high 
level of differential diagnosis of atypical ductal breast 
hyperplasia was demonstrated. It is hoped that such 
an approach can be used to separate the patients who 
require the surgery from those assigned only to active 
observation [119].
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Therefore, today, in the era of evidence-based 
medicine, extensive mastery and improvement of ar-
tificial intelligence methodology based on convincing 
comprehensive information about the connective tis-
sue component and microenvironment using modern 
methods of image visualization create a real perspec-
tive of personalized prognosis and choice of treatment 
tactics for cancer patients.

Conclusion
The analysis of the modern literature on the state 

and role of the components of tumor microenviron-
ment showed a key role of a process of remodeling 
of ECM microarchitectonics. The main players that sig-
nificantly affect the remodeling of tumor ECM are ac-
tivated fibroblasts, namely MF and TAF, because they, 
on the one hand, intensify the expression of a number 
of MMPs, on the other — produce collagen, including 
type I collagen, a large content of which leads to des-
moplasia. Finally, such a complex of interactions 
changes the physicochemical properties, qualitative 
and quantitative characteristics in the non-tumor ma-
trix and initiates accelerated proliferation, invasion and 
migration of tumor cells with subsequent metastasis.

In addition, in vitro and in vivo experiments, and the 
studies conducted on clinical material, have shown that 
MMP-8 and type I collagen under certain conditions 
exhibit not only protumoral but also antitumor effects, 
and some of the underlying mechanisms have been 
established. Through clinical observations, a number 
of biomarkers have been identified that are considered 
potential targets for the development of new markers 
for the prognosis and treatment of cancer patients.
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