IN VITRO AND IN VIVO ANTICANCER ACTIVITY OF STEROID SAPONINS OF PARIS POLYPHYLLA VAR. YUNNANENSIS

L.L. Yan1, §, Y.J. Zhang2, §, W.Y. Gao1, *, S.L. Man1, Y. Wang1

1School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
2School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China

Aim: To confirm the anticancer activity of steroid saponins isolated from the rhizome of Paris polyphylla var. yunnanensis and evaluate the structure-activity relationships of these steroid saponins in vitro and in vivo. Materials and Methods: Eight known steroid saponins were isolated from the rhizome of Paris polyphylla. The LA795 lung adenocarcinoma cell line from mice was chosen to evaluate cytotoxicity by means of MTT assay, and to study apoptosis by means of AnnexinV-FITC/PI flow cytometry. Diosgenin-3-α-L-arabinofuranosyl(1→4)-[α-L-rhamnopyranosyl(1→2)]-β-D-glycopyranoside (compound 1), the main steroid saponin of Paris polyphylla, and diosgenin (Dio), the aglycone of major steroid saponins, were evaluated for antitumor activity on LA795 lung adenocarcinoma in T739 inbred mice. Results: The steroid saponins showed remarkable cytotoxicity and caused typical apoptosis in a dose-dependent manner. They were evaluated in vivo by their effect on tumor developed in T739 inbred mice. The oral administration to T739 mice bearing LA795 lung adenocarcinoma of compound 1 and diosgenin significantly inhibited tumor growth, by 29.44% and 33.94%, respectively. HE staining showed that lungs and livers of treated mice underwent various levels of histopathological alterations. It was demonstrated by TUNEL assay that apoptosis rate in tumor cells was increased in comparison to cells in control mice. The 3-O-glycoside moiety and spirostanol structure played an important role in the anticancer activity of steroid saponins, and the number and the variety of glycosides of compounds strongly influenced on their anticancer activity. Conclusion: Rhizoma Paridis saponins showed anticancer activity against lung adenocarcinoma cell line, both in vitro and in vivo, and their effect was dependent on compounds’ structure in a certain degree.

Key Words: Paris polyphylla var. yunnanensis, steroid saponins, diosgenin, anticancer activity.
and the purity of other seven compounds is > 90%. Diosgenin (the purity > 99.9%) was purchased from Sigma-Aldrich Chemie GmbH.

Cell line and culture. The mice lung adenocarcinoma cell line (LA795) was purchased from Peking Union Medical College (Beijing, China). The LA795 cells were maintained in RPMI-1640 medium supplemented with 10% heat-inactivated fetal bovine serum (FBS), penicillin (100 U/mL) and streptomycin (100 μg/mL) at 37 °C in 5% CO₂. Cells were passaged every 3–4 days.

In vitro assay for cytotoxicity (MTT assay). LA795 cells (3 × 10⁴ cells/mL) were plated on 96-well plates (200 μL of medium per well). After 24 h, cells were synchronized by adding serum-free media. After another 24 h, the cells were treated with various concentrations of DMSO solutions of studied compounds (concentration of DMSO < 0.1%). Each solution was added to eight wells. In another 24 h, 100 μL of 0.5 mg/mL MTT medium was added to each well for another 4 h. The supernatant fluid was then removed, 100 μL per well of DMSO was added, and samples were shaken for 15 min. Absorbance at 570 nm was measured with an enzyme-linked immunosorbent assay plate reader. This experiment was carried out in triplicate. Growth inhibition (GI) was calculated according to the formula: GI = 1 – (A₅₇₀ of treated cells / A₀₅₇₀ of control cells). IC₅₀ values were calculated using a linear regression of dose-dependent curves plotted from at least six points.

Annexin V-FITC/PI staining for apoptosis evaluation. Apoptosis was quantified using flow cytometry to measure the levels of detectable phosphatidylinerine on the outer membrane of apoptotic cells. LA795 cells were seeded on 6-well plates (3 × 10⁴ cells/mL), and incubated with the compounds in 0.02% DMSO solutions. The concentration of each compound was equal to one third from respective IC₅₀ value. After 24 h, cells were harvested by centrifugation, washed twice with PBS at 4 °C, and re-suspended in diluted binding buffer from the Annexin V-FITC kit at a concentration of 1 × 10⁶ cells/mL. 100 μL of this suspension was added to a 5 mL Flow Cytometry (FC) tube. 5 μL of Annexin V-FITC and 10 μL of 20 mg/mL propidium iodide (PI) were further added to the tube, followed by 15 min of incubation in the darkness. 400 mL of PBS were then added. Quantitative analysis of apoptotic cells level was performed using a Flow Cytometer (Coulter Epics Altra, Beckman Coulter Inc., USA). The procedure was carried out three times.

In vivo tumor growth inhibition. T739 inbred mice, both male and female, weighting 18.0 ± 2.0 g, were obtained from the Laboratory Animal Breeding and Research Center, Cancer Hospital, Academy of Medical Science (Beijing, China). The animals were kept under pathogen-free conditions, and fed with chow and sterile water *ad lib.* This animal study was approved by the Institutional Animal Care and Use Committee of China, and Institutional guidelines for animal welfare. LA795 cells (1 × 10⁶/mL) were injected subcutaneously into the right armpits of the mice. Tumors grew to a volume of 0.5 to 1.0 cm³. After sacrificing the mice, the tumor was excised, cut into small pieces (volume 0.5–1.0 mm³) and dipped in 0.9% Sodium Chloride at 4 °C. After filtration and deliquation the pieces dispersed into cells. Those tumor cells were then injected into recipient mice (2 × 10⁶/mL, 0.2 mL for each mouse). Thus, T739 mice (n = 40) bearing LA795 lung adenocarcinoma were obtained. Five days after injection of LA795 cells, forty T739 mice bearing LA795 lung adenocarcinoma were randomly divided into four groups (n = 10 per group): 1) control group (0.1 ml/10 g distilled water, p. o.), 2) cyclophosphamide (CPH) treated group (20 mg/kg, i. p.), 3) compound 1-treated group (100 mg/kg, p. o.), and 4) diosgenin-treated group (200 mg/kg., p. o.). Drugs were administered daily for 14 days, once a day.

At the first and the last days of the experiment, the body weight of each mouse was measured. The tumor volume was estimated every other day, on the basis of two-dimensional tumor measurements performed with a micrometer, and resorting to the formula suggested by Kato *et al.* (1994): Tumor vol. (mm³) = 0.5A × B², where A is the longest diameter and B the shortest diameter of the tumor. The mice were sacrificed at the day 14, and autopsies were performed. Major organs such as lung, liver, kidneys, spleen, and tumor mass were then dissected and their weights were measured. The spleen index was calculated using the formula: spleen index = weight of spleen (mg) / body weight (g). The tumor inhibitory rate was calculated using the formula: tumor inhibitory rate (%) = 100% × (mean tumor weight in control mice minus mean tumor weight in treated mice) / mean tumor weight in control mice.

Histological examination. Dissected organs (lung, liver, kidneys) were fixed in 10% paraformaldehyde (pH 7.5) and then processed for paraffin embedding according to the standard histological procedures. 4 μm-thick sections were prepared and stained with hematoxylin and eosin, counterstained with methylgreen. The sections were examined and images were captured under a light microscope.
stained with HE stain. Histopathological examination was completed using Olympus microscopy.

TUNEL assay. Apoptotic cells in the tumor sections were visualized by the terminal deoxynucleotidyl transferase mediated d-UTP nick and labeling (TUNEL) technique according to the manufacturer’s instruction (Chemicon International, Inc, USA). Tissue sections were treated with 10 μg/mL protease K for 10 min at room temperature. The slides were immersed in a 2% H2O2 solution to block endogeneous peroxidase activity. TdT was used to catalyze the addition of biotin-conjugated d-UTP to the 3'-OH ends of DNA fragments. The incorporated biotin was detected by streptavidin conjugated to horseradish peroxidase. The staining was then performed using 3, 3'-diaminobenzidine tetrahydrochloride (DAB) as the chromagen and H2O2 as the substrate. Tissue sections were counterstained with hematoxylin and then mounted. Cells with deep brown stained nuclei were counted as positive.

Statistical analysis. SPSS for Windows (SPSS Inc.) was used to analyze the data and plot curves. Data was expressed as the mean ± standard deviation (SD). The statistical significance of differences observed between each treatment group and the control was determined by the Student’s t-test (two-tailed). Differences were considered statistically significant if p < 0.05.

RESULTS

Inhibition of LA795 cells growth in vitro. Nine compounds (compounds 1–8 and Diosgenin) were screened using MTT assay. These compounds showed remarkable cytotoxicity against LA795 cell in a dose-dependent manner (Fig. 2). Their median inhibitory concentration (IC50) are listed in Table 1.

![Fig. 2. Inhibitory effect of compound 1-8 and diosgenin on LA795 cell growth. LA795 cells were treated with compounds 1–8 or diosgenin at different concentrations for 24 h, and the growth inhibition was determined using the MTT assay.](image)

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC50 (µmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound 1</td>
<td>0.62 ± 0.5</td>
</tr>
<tr>
<td>Compound 2</td>
<td>0.71 ± 0.6</td>
</tr>
<tr>
<td>Compound 3</td>
<td>0.75 ± 0.8</td>
</tr>
<tr>
<td>Compound 4</td>
<td>1.02 ± 1.0</td>
</tr>
<tr>
<td>Compound 5</td>
<td>1.00 ± 0.1</td>
</tr>
<tr>
<td>Compound 6</td>
<td>106.51 ± 13.0</td>
</tr>
<tr>
<td>Compound 7</td>
<td>1.71 ± 5.4</td>
</tr>
<tr>
<td>Compound 8</td>
<td>2.71 ± 10.3</td>
</tr>
<tr>
<td>Diosgenin</td>
<td>149.75 ± 10.4</td>
</tr>
</tbody>
</table>

Annexin V-FITC assay of LA795 cells apoptosis. Many chemical compounds can inhibit the growth of tumor cells, but not all of them can trigger apoptosis [11]. To determine whether apoptosis was induced by the compounds mentioned above, we performed flow cytometric analysis with Annexin V-FITC conjugated to propidium iodide (PI). Annexin V-FITC-positive, PI-negative (Annexin V-FITC (+) PI (-)) cells were considered to be in an early apoptotic stage, while Annexin V-FITC-positive, PI-positive (Annexin V-FITC (+) PI (+)) cells were considered to be late apoptotic or necrotic. Apoptosis of LA795 cells was induced by compounds added at the concentration equal to one third from their IC50, values, although at different degree. The rates of apoptosis induced by Paris polyphylla compounds were significantly higher than apoptotic rate in the control group (p < 0.01) (Table 2).

Fig. 3. Effect of drug treatment on tumor volume. CPH: Cy-clophosphamide; Dio: Diosgenin. *p < 0.01 scores of drug-administered group vs control group.

Anti-tumor effects of the compounds in vivo. Although any reduction of the tumor volume was not observed between the drug treatment groups, tumor masses increased much slowly than in the control group during the period of drug administration (Fig. 3). Eventual tumor weight in all treated groups was obviously lower than in the control group (p < 0.01) (Table 3). That indicated CPH, compound 1 and Dio didn’t make the solid tumors disappear, but slow down their growth.

Table 1. IC50 of the compounds (x— ± S, n = 3)

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC50 (µmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound 1</td>
<td>1.85 ± 0.1</td>
</tr>
<tr>
<td>Compound 2</td>
<td>5.14 ± 0.29</td>
</tr>
<tr>
<td>Compound 3</td>
<td>3.06 ± 0.33</td>
</tr>
<tr>
<td>Compound 4</td>
<td>2.26 ± 0.47</td>
</tr>
<tr>
<td>Compound 5</td>
<td>39.00 ± 3.63</td>
</tr>
<tr>
<td>Compound 6</td>
<td>319.53 ± 24.77</td>
</tr>
<tr>
<td>Compound 7</td>
<td>1.35 ± 0.19</td>
</tr>
<tr>
<td>Compound 8</td>
<td>2.71 ± 0.26</td>
</tr>
<tr>
<td>Diosgenin</td>
<td>149.75 ± 10.43</td>
</tr>
</tbody>
</table>

Table 2. Flow cytometry analysis of LA795 cells after incubation with drugs for 24 h (x— ± S, n = 3)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Dosage (µmol·L⁻¹)</th>
<th>Annexin (+) PI (-)%</th>
<th>Annexin (+) PI (+)%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>—</td>
<td>1.1 ± 0.3</td>
<td>4.6 ± 0.7</td>
</tr>
<tr>
<td>Compound 1</td>
<td>0.62</td>
<td>12.9 ± 0.5*</td>
<td>36.3 ± 2.6*</td>
</tr>
<tr>
<td>Compound 2</td>
<td>1.71</td>
<td>5.4 ± 0.6*</td>
<td>20.0 ± 1.0*</td>
</tr>
<tr>
<td>Compound 3</td>
<td>1.02</td>
<td>6.8 ± 0.2*</td>
<td>32.3 ± 3.0*</td>
</tr>
<tr>
<td>Compound 4</td>
<td>0.75</td>
<td>8.6 ± 1.0*</td>
<td>34.9 ± 3.1*</td>
</tr>
<tr>
<td>Compound 5</td>
<td>13.00</td>
<td>3.7 ± 0.1*</td>
<td>13.5 ± 1.7*</td>
</tr>
<tr>
<td>Compound 6</td>
<td>106.51</td>
<td>1.3 ± 0.1</td>
<td>18.2 ± 0.4*</td>
</tr>
<tr>
<td>Compound 7</td>
<td>0.45</td>
<td>13.7 ± 0.3*</td>
<td>41.1 ± 2.4*</td>
</tr>
<tr>
<td>Compound 8</td>
<td>0.90</td>
<td>10.3 ± 0.9*</td>
<td>39.6 ± 3.1*</td>
</tr>
<tr>
<td>Diosgenin</td>
<td>49.92</td>
<td>3.4 ± 0.3*</td>
<td>11.8 ± 1.7*</td>
</tr>
</tbody>
</table>

Notes: Annexin (+) PI (-)%: the percentage of cells in an early apoptotic stage; Annexin (+) PI (+)%: the percentage of cells in a late apoptotic or necrotic stage. *p < 0.01 scores of drug-administered group vs control group.
Table 3. Inhibitory effects of drug treatment on LA795 transplanted tumors in T739 mice

<table>
<thead>
<tr>
<th>Group</th>
<th>Dosage (mg/kg/d)</th>
<th>Tumour volume (mm³)</th>
<th>Tumour weight (g)</th>
<th>Inhibition of growth of tumour (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>—</td>
<td>5462.5 ± 105.5</td>
<td>6.3 ± 0.6</td>
<td></td>
</tr>
<tr>
<td>CPH</td>
<td>20</td>
<td>2912.7 ± 252.9*</td>
<td>2.8 ± 0.4*</td>
<td>56.09</td>
</tr>
<tr>
<td>Compound 1</td>
<td>100</td>
<td>4234.0 ± 486.4</td>
<td>4.4 ± 0.5*</td>
<td>29.44</td>
</tr>
<tr>
<td>Dio</td>
<td>200</td>
<td>4005.1 ± 762.4</td>
<td>4.2 ± 0.5*</td>
<td>33.94</td>
</tr>
</tbody>
</table>

Notes: CPH: Cyclophosphamide; Dio: Diosgenin. *p < 0.01 scores of drug-administered group vs control group.

Our original purpose of including the cyclophosphamide (CPH) group was to compare the anticancer activity of compound 1 with the CPH group, because CPH is generally used for treatment of various types of cancers. It is a clinically approved anticancer agent that works by slowing or stopping cell growth. Its use is becoming more common in anticancer experimental research, and the dosage (20 mg/kg) of the CPH treated group was referred to previous reports [12, 13].

The solid tumor in the control group grew well and the average tumor weight reached 6.3 g. Meanwhile, CPH exhibited significant anti-tumor activity. In the CPH group (20 mg/kg, i. p.), the average tumor weight was only 2.8 g and the inhibitory ratio was 56.09%. Compound 1 and Diosgenin also exerted a remarkable inhibitory effect on tumor growth. In the compound 1-treated group (100 mg/kg, p. o.) and the Diosgenin-treated group (200 mg/kg, p. o.), the tumor weights were significantly reduced (p < 0.01). The inhibitory ratio of tumor growth reached 29.44% and 33.94%, respectively (see Table 3).

The body weight of mice in the treatment groups appeared to be slightly decreased in comparison with the control group, but these results were not statistically-valid (p > 0.05) (Table 4). Spleen index in all three treatment groups (CPH, compound 1 and Diosgenin) was reduced compared with the control group, especially the spleen index of mice treated with compound 1.

Table 4. Effects of drug treatment on body weight and spleen index of T739 mice bearing LA795 lung adenocarcinoma

<table>
<thead>
<tr>
<th>Group</th>
<th>Dosage (mg/kg/d)</th>
<th>Body weight (g) Before the treatment</th>
<th>Body weight (g) After the treatment</th>
<th>Spleen index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>—</td>
<td>23.7 ± 1.1</td>
<td>23.9 ± 1.0</td>
<td>6.8 ± 1.1</td>
</tr>
<tr>
<td>CPH</td>
<td>20</td>
<td>24.4 ± 1.3</td>
<td>23.6 ± 1.3</td>
<td>5.3 ± 0.4</td>
</tr>
<tr>
<td>Compound 1</td>
<td>100</td>
<td>24.0 ± 0.8</td>
<td>23.5 ± 1.1</td>
<td>4.5 ± 0.7*</td>
</tr>
<tr>
<td>Dio</td>
<td>200</td>
<td>25.0 ± 1.1</td>
<td>24.7 ± 1.1</td>
<td>6.0 ± 0.6</td>
</tr>
</tbody>
</table>

Notes: CPH: Cyclophosphamide; Dio: Diosgenin. *p < 0.05 scores of drug-administered group vs control group.

Effects of compounds on lung, liver, kidneys, and tumor mass in mice. In order to investigate the toxicity of the treated compounds, lung, liver and kidney sections were prepared and stained by HE. Lesions of various degree were found in the lungs and livers of treatment groups. The kidney microstructure was normal. For the compound 1 group, lungs were seriously damaged with a large area of hemorrhagic infarction (Fig. 4, a). For other groups (CPH and Diosgenin), there were congestion and inflammatory infiltration of lungs. Also, the liver lesions in mice treated with compound 1 were the most severe among all three treatment groups. As shown on Fig. 4, b and 4, c, the normal structure of the hepatic lobules was destroyed, and hydropic degeneration, inflammatory infiltration and fatty degeneration were observed. For other treatment groups, slight hydropic degeneration and inflammatory infiltration was found.

![Fig. 4. Pathological changes in lungs and livers of T739 mice bearing LA795 lung adenocarcinoma upon compound 1 treatment. a, lung tissue, showing hemorrhagic infarction, 100 ×. b, liver tissue, showing inflammatory infiltration, 400 ×. c, liver tissue, showing fatty degeneration, 400 ×.](image-url)
methylmotogracillin, and so on [5, 6, 17–21].

including polyphyllin D, diosgeninscin, gracillin, trillin,

contained significant amounts of steroidal saponins,

of glycosides correlate with the cytotoxicity of steroid

genin saponins. This data indicates that the number

inhibition rate both among diosgenin and penno-

saponins (except compound 6) had higher inhibition

kable cytotoxicity against LA795 cell, and eight steroid

studies pointed that the main anti-tumor components of this herb. Previous

cancer. Recent studies pointed to steroid saponins as

herb as a main ingredient, have been used to treat

such as Chonglou-Tang, which includes this Chinese

tionally used for centuries. Some medical formula,

of cell growth compared with diosgenin.

* & p < 0.01 scores of drug-administered group vs control group.

DISCUSSION

Currently chemotherapy is regarded as one of the

most efficient cancer treatment aproach. Although

chemotherapy significantly improves symptoms and

the quality of life of patients with lung cancer, only

modest increase in survival rate can be achieved.

Faced with palliative care, many cancer patients use

alternative medicines, including herbal therapies.

Among these therapies, traditional Chinese medicine

is probably the best established and codified, dating

back several thousand years. Traditionally, Chinese

herbs are used in combinations of single herbs, or

prescriptions — called formulas. Specific herbal ex-

tracts, and combinations, have been designed to treat

specific diseases including cancer [14–16].

Paris polyphylla var. yunnanensis has been tradi-

tionally used for centuries. Some medical formula,

such as Chonglou-Tang, which includes this Chinese

herb as a main ingredient, have been used to treat
cancer. Recent studies pointed to steroid saponins as

the main anti-tumor components of this herb. Previous

studies pointed that Paris polyphylla var. yunnanensis contained significant amounts of steroid saponins, including polyphyllin D, diosgeninscin, gracillin, trillin, methylmotogracillin, and so on [5, 6, 17–21].

In the experiments in vitro, as shown in MTT results, diosgenin saponins had stronger cytotoxicity than pennogenin saponins. These compounds had remarkable cytotoxicity against LA795 cell, and eight steroid saponins (except compound 6) had higher inhibition of cell growth compared with diosgenin.

Compound 7 with four glycosides had shown the highest rate of cell growth inhibition among other studied steroid saponins, while compounds 5 and 6, containing two glycosides, exhibited the lowest inhibition rate both among diosgenin and pennogenin saponins. This data indicates that the number of glycosides correlate with the cytotoxicity of steroid saponins. However, IC_{50} of compound 4 was lower than that of compound 3 and compound 8. This phenomenon could be explained by the fact that the purity of compound 4 was approximately 75%, and the purity of other seven compounds was more than 90%.

Compared with compound 3 and compound 2, compound 1 and 4 showed higher cytotoxicity rate, respectively. Although the number of glycosides in compounds was the same, the varieties of glycosides were different. Besides glycopyranoside and rhamnopyranoside, their main difference was that compounds 1 and compound 2 contain arabinofuranosides, and that compound 3 and 4 contain rhamnopyranosides. When there was used aglycone of diosgenin, the activity of rhamnopyranoside was stronger than of arabinofuranoside-containing compound. But when there was aglycone of pennogenin, the effect was opposite. This indicated that the variety of glycosides of steroid saponins also could affect cytotoxicity.

Altogether, the 3-O-glycoside moiety and spiro-

stanol structure were found to be essential for the proapoptotic activity with regard to anticancer structural relationship of steroid saponins. Their cytotoxic activities were strongly influenced by the number and the variety of steroid saponins.

Compound 1 was the main steroid saponin component in Paris polyphylla, and the contents of other seven compounds were very few. So compound 1 and diosgenin (Dio), the aglycone of compound 1 were selected for in vivo experiment. And we hope that the anti-tumor activities in vivo of other compounds could be estimated through the results of compound 1. In in vivo experiment, the molar dose of compound 1 was set to one-quarter of diosgenin, because of the high toxicity of compound 1 for mice. The results showed that compound 1 was as effective as diosgenin with the 4-fold molar dose in inhibition of tumor growth. This further indicated that glycosides of steroid saponins promote the anticancer activity of diosgenin. From the results of tissue sections HE staining, it is seen that compound 1 caused stronger lung and liver damage than diosgenin. Probably the 3-O-glycoside structure may contribute to the toxicity of steroid saponins.

Treatment of tumors is directed not only on inhibition

of cell proliferation, but also on induction of apoptosis of tumor cells. More and more attention is paid to the ability of drugs to induce apoptosis in the process of evaluation of anti-tumor agents’ effectiveness. That is why we tested the ability of eight steroid saponins extracted from Paris polyphylla to induce apoptosis by means of AnnexinV-FITC/PI flow cytometry approach. The rates of apoptosis in the treatment groups were significantly higher than that in the control group, which was shown by AnnexinV-FITC/PI flow cytometry. Additionally, in TUNEL assay of tumor sections, the number of apoptotic cells in tumors treated with compound 1 was increased too. This data suggest that one of anti-tumor mechanisms of steroid saponins is an induction of tumor cell apoptosis. The main biologic activity ascribed to saponins is their membrane permeabilizing property. The main actions are considered changes in membrane permeability and pore formation [22–24]. In apoptotic death, an increase of mitochondrial membrane permeability is considered to be one of the key events. A sudden increase in permeability of the inner mitochondrial
membrane, the so-called mitochondrial permeability transition, is a common feature of apoptosis and is mediated by the mitochondrial permeability transition pore (mtPTP) [25–27]. So the detailed mechanism of the eight steroid saponins extracted requires future study.

In conclusion, steroid saponins of *Paris polyphylla* var. *yunnanensis* could be regarded as promising drugs for cancer therapy, but the mechanisms of their anti-cancer activity and their toxicity should be further addressed. In our studies, we demonstrated that the structure of spirostanol 3-O-glycoside and the number of glycosides were two main factors responsible for compounds’ cytotoxicity. Also, we plan to study further the saponins structure-function relationships, and perform structure modifications to design new compounds with strong anti-tumor activity and low toxicity.

ACKNOWLEDGEMENTS

This work was supported by a grant 07JCZDJC05400 from Tianjin Municipal Science and Technology Commission (Tianjin, China). We also wish to thank Traditional Chinese Medicine Department at Tianjin University of Traditional Chinese Medicine for the use of their equipment.

REFERENCES

Copyright © Experimental Oncology, 2009